

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

Statistics 1

Tuesday 18 JANUARY 2005

Afternoon

1 hour 30 minutes

4766

Additional materials: Answer booklet Graph paper MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72.

Registered Charity 1066969

Section A (36 marks)

1 The number of minutes of recorded music on a sample of 100 CDs is summarised below.

Time (t minutes)	$40 \le t < 45$	$45 \le t < 50$	$50 \le t < 60$	$60 \le t < 70$	$70 \le t < 90$
Number of CDs	26	18	31	16	9

- (i) Illustrate the data by means of a histogram.
- (ii) Identify two features of the distribution.

2 A sprinter runs many 100-metre trials, and the time, x seconds, for each is recorded. A sample of eight of these times is taken, as follows.

- 10.53 10.61 10.04 10.49 10.63 10.55 10.47 10.63
- (i) Calculate the sample mean, \bar{x} , and sample standard deviation, s, of these times. [3]
- (ii) Show that the time of 10.04 seconds may be regarded as an outlier. [2]
- (iii) Discuss briefly whether or not the time of 10.04 seconds should be discarded. [2]
- 3 The Venn diagram illustrates the occurrence of two events A and B.

You are given that $P(A \cap B) = 0.3$ and that the probability that neither A nor B occurs is 0.1. You are also given that P(A) = 2P(B).

Find P(B).

[3]

[5]

[2]

- 4 The number, X, of children per family in a certain city is modelled by the probability distribution P(X = r) = k(6 - r)(1 + r) for r = 0, 1, 2, 3, 4.
 - (i) Copy and complete the following table and hence show that the value of k is $\frac{1}{50}$. [3]

r	0	1	2	3	4
P(X = r)	6k	10k	-		

(ii) Calculate E(X).

- (iii) Hence write down the probability that a randomly selected family in this city has more than the mean number of children. [1]
- 5 A rugby union team consists of 15 players made up of 8 forwards and 7 backs. A manager has to select his team from a squad of 12 forwards and 11 backs.
 - (i) In how many ways can the manager select the forwards? [2]
 - (ii) In how many ways can the manager select the team?
- An amateur weather forecaster describes each day as either sunny, cloudy or wet. He keeps a 6 record each day of his forecast and of the actual weather. His results for one particular year are given in the table.

		W	Total		
		Sunny			
Actual Weather	Sunny	55	12	7	74
	Cloudy	17	128	29	174
weather	Wet	3	33	81	117
Total		75	173	117	365

A day is selected at random from that year.

- (i) Show that the probability that the forecast is correct is $\frac{264}{365}$. [2] Find the probability that (ii) the forecast is correct, given that the forecast is sunny, [2] (iii) the forecast is correct, given that the weather is wet, [2]
- (iv) the weather is cloudy, given that the forecast is correct. [2]

[Turn over

[2]

[3]

7 The cumulative frequency graph below illustrates the distances that 176 children live from their primary school.

(i) Use the graph to estimate, to the nearest 10 metres,

	(A) the median distance from school,	[2]
	(B) the lower quartile, upper quartile and interquartile range.	[3]
(ii)	Draw a box and whisker plot to illustrate the data.	[3]

[Question 7 continues on the next page.]

4

The graph on page 4 used the following grouped data.

Distance (metres)	200	400	600	800	1000	1200
Cumulative frequency	20	64	118	150	169	176

(iii) Copy and complete the grouped frequency table below describing the same data.

Distance (d metres)	Frequency
$0 < d \le 200$	20
$200 < d \le 400$	

(iv) Hence estimate the mean distance these children live from school. [3]

It is subsequently found that none of the 176 children lives within 100 metres of the school.

(v)	Calculate the revised estimate of the mean distance.	[2]

[Question 8 is printed overleaf.]

[2]

8 At a doctor's surgery, records show that 20% of patients who make an appointment fail to turn up. During afternoon surgery the doctor has time to see 16 patients.

There are 16 appointments to see the doctor one afternoon.

- (i) Find the probability that all 16 patients turn up. [2]
- (ii) Find the probability that more than 3 patients do not turn up. [3]

To improve efficiency, the doctor decides to make more than 16 appointments for afternoon surgery, although there will still only be enough time to see 16 patients. There must be a probability of at least 0.9 that the doctor will have enough time to see all the patients who turn up.

- (iii) The doctor makes 17 appointments for afternoon surgery. Find the probability that at least one patient does not turn up. Hence show that making 17 appointments is satisfactory. [3]
- (iv) Now find the greatest number of appointments the doctor can make for afternoon surgery and still have a probability of at least 0.9 of having time to see all patients who turn up. [4]

A computerised appointment system is introduced at the surgery. It is decided to test, at the 5% level, whether the proportion of patients failing to turn up for their appointments has changed. There are always 20 appointments to see the doctor at morning surgery. On a randomly chosen morning, 1 patient does not turn up.

(v) Write down suitable hypotheses and carry out the test.

Mark Scheme

Statistics 1 (4766) January 2005

Mark Scheme

Qn	Answer	Mk	Comment
3	Let $P(B) = x$		
	Using $P(AUB) = P(A) + P(B) - P(A \cap B)$	M1	Correct set of
	0.9 = 2x + x - 0.3	M1	Correct solution
	$\mathbf{x} = 0.4$. 1	
	P(B) = 0.4	AI	
4	r 0 1 2 3 4		
(i)	P(X = r) 6k 10k 12k 12k 10k	B1	1 value correct
	$50k-1 \rightarrow k-1/50$	ы M1	all 3 correct
	30k - 1 , $k - 1/30$	1411	Sum Of 1
(ii)	E(X) = 110k = 2.2	M1	sum of rp
		A1	cao
(iii)	P(X > 2.2) = 22k = 0.44	B1	
(11)		21	
5	(12)	1.54	
(1)	$\begin{bmatrix} 12\\ 9 \end{bmatrix}$ ways of choosing forwards = 495		
		ΠΙ	
(ii)			
	(12) (11)	N/1	
	$\begin{bmatrix} 12 \\ 8 \end{bmatrix} \times \begin{bmatrix} 11 \\ 7 \end{bmatrix}$ ways of choosing team	M1 M1	Product with (1)
		1411	Udeks
	=495x330 = 163350	A1	cao
6		1.11	
(1)	P(Correct forecast) = $\frac{55+128+81}{267} = \frac{264}{267}$		Numerator
	365 365	ΠΙ	
(ii)	P(Correct forecast given sunny forecast)		
	· ·		
	$=\frac{55}{-7}=0.733$	M1	Denominator
	75	A1	
(iii)	P(Correct forecast given wet weather)		
	$=\frac{81}{0.692}$	M1	Denominator
	117 - 0.072	A1	
(iv)	P(Cloudy weather given correct forecast)		
	r (croady weather given concertorteast)		
	$-\frac{128}{0.485}$	M 1	Denominator
	$-\frac{1}{264} - 0.465$	A1	
0	Anowon	M1-	Commont
N	Answer	IVIK	Comment

7 (i) A	Median distance = 88^{th} value = 480	M1 A1	Within 5 cao
В	Lower Quartile = 44^{th} value = 320	B1	
	Upper Quartile = 132^{nd} value = 680	B1	
	Interquartile range = $680 - 320 = 360$	M1	ft
(ii)	0 320 480 680 1200	G1 G1 G1	Basic idea Linear 0 - 1200 Box including median (accurate)
(iii)	DistanceFrequency $0 < d \le 200$ 20 $200 < d \le 400$ 44 $400 < d \le 600$ 54 $600 < d \le 800$ 32 $800 < d \le 1000$ 19 $1000 < d \le 1200$ 7	M1 M1	Correct classes Correct frequencies
(iv)	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1 M1	mid points fx
	Estimate of mean = 507.95	A1	
(v)	Mid point of first class now 150 Total increase of 1000 New estimate of mean = 513.6	M1 A1	150
(vi)	The point (0,0) would move to (100,0)	E1 E1	point (0,0) point (100,0)
Qn	Answer	Mk	Comment

8	Number not turning up $X \sim B(16,0.2)$		
(i)	$P(X=0) = 0.8^{16} = 0.0281$	M1 A1	0.8 ¹⁶ or tables
(ii)	$P(X > 3) = 1 - P(X \le 3)$ or $P(X \le 12)$	M1 M1	Manipulation Use of tables
	= 1 - 0.5981 = 0.4019	A1	
(iii)	$X \sim B(17, 0.2) \rightarrow P(X \ge 1) = 0.9775$	M1 A1	B(17,0.2) 0.9775
	Greater than 0.9 so acceptable	E1	
(iv)	$X \sim B(18, 0.2) \rightarrow P(X \ge 2) = 0.9009$	M1 A1	18 and ≥2 0.9009
	Can make 18 appointments $X \sim B(19, 0.2) \rightarrow P(X \ge 3) = 0.7631$	A1 M1	18 ok 19 and ≥ 3
(v)	Now $X \sim B(20,p)$ Let p be probability of not turning up. H ₀ : p = 0.2 H ₁ : p \neq 0.2	B1 B1 B1	
	$P(X \le 1) = 0.0692 > 2.5\%$ cannot reject H ₀ conclude that the proportion of patients not turning up is unchanged.	M1 M1 A1 E1	0.0692 correct comparison cannot reject H ₀

Examiner's Report