

## ADVANCED SUBSIDIARY GCE MATHEMATICS (MEI)

4766

Statistics 1

Candidates answer on the Answer Booklet

#### OCR Supplied Materials:

- 8 page Answer Booklet
- Graph paper
- MEI Examination Formulae and Tables (MF2)

## **Other Materials Required:**

None

Monday 19 January 2009 Afternoon

Duration: 1 hour 30 minutes



#### INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

#### INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- This document consists of 8 pages. Any blank pages are indicated.

#### Section A (36 marks)

A supermarket chain buys a batch of 10000 scratchcard draw tickets for sale in its stores. 50 of these 1 tickets have a £10 prize, 20 of them have a £100 prize, one of them has a £5000 prize and all of the rest have no prize. This information is summarised in the frequency table below.

| Prize money | £0   | £10 | £100 | £5000 |
|-------------|------|-----|------|-------|
| Frequency   | 9929 | 50  | 20   | 1     |

- (i) Find the mean and standard deviation of the prize money per ticket. [4]
- (ii) I buy two of these tickets at random. Find the probability that I win either two  $\pounds 10$  prizes or two £100 prizes. [3]
- 2 Thomas has six tiles, each with a different letter of his name on it.
  - (i) Thomas arranges these letters in a random order. Find the probability that he arranges them in the correct order to spell his name. [2]
  - (ii) On another occasion, Thomas picks three of the six letters at random. Find the probability that he picks the letters T, O and M (in any order). [3]
- 3 A zoologist is studying the feeding behaviour of a group of 4 gorillas. The random variable Xrepresents the number of gorillas that are feeding at a randomly chosen moment. The probability distribution of X is shown in the table below.

| r                 | 0 | 1   | 2    | 3    | 4    |
|-------------------|---|-----|------|------|------|
| $\mathbf{P}(X=r)$ | р | 0.1 | 0.05 | 0.05 | 0.25 |

| (i) | Find the value of <i>p</i> . | [1] |
|-----|------------------------------|-----|
|     |                              |     |

- (ii) Find the expectation and variance of X.
- (iii) The zoologist observes the gorillas on two further occasions. Find the probability that there are at least two gorillas feeding on both occasions. [2]
- A pottery manufacturer makes teapots in batches of 50. On average 3% of teapots are faulty. 4
  - (i) Find the probability that in a batch of 50 there is

| (A) | exactly one faulty teapot, | [3] |
|-----|----------------------------|-----|
|-----|----------------------------|-----|

- (B) more than one faulty teapot. [3]
- (ii) The manufacturer produces 240 batches of 50 teapots during one month. Find the expected number of batches which contain exactly one faulty teapot. [2]

[5]

- 5 Each day Anna drives to work.
  - *R* is the event that it is raining.
  - *L* is the event that Anna arrives at work late.

You are given that P(R) = 0.36, P(L) = 0.25 and  $P(R \cap L) = 0.2$ .

- (i) Determine whether the events *R* and *L* are independent. [2]
- (ii) Draw a Venn diagram showing the events *R* and *L*. Fill in the probability corresponding to each of the four regions of your diagram. [3]

[3]

(iii) Find P(L|R). State what this probability represents.

[Question 6 is printed overleaf.]

#### Section B (36 marks)

6 The temperature of a supermarket fridge is regularly checked to ensure that it is working correctly. Over a period of three months the temperature (measured in degrees Celsius) is checked 600 times. These temperatures are displayed in the cumulative frequency diagram below.



- (i) Use the diagram to estimate the median and interquartile range of the data. [3]
- (ii) Use your answers to part (i) to show that there are very few, if any, outliers in the sample. [4]
- (iii) Suppose that an outlier is identified in these data. Discuss whether it should be excluded from any further analysis. [2]
- (iv) Copy and complete the frequency table below for these data.

| Temperature<br>( <i>t</i> degrees Celsius) | $3.0 \leq t \leq 3.4$ | $3.4 < t \le 3.8$ | $3.8 < t \le 4.2$ | $4.2 < t \le 4.6$ | $4.6 < t \le 5.0$ |
|--------------------------------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|
| Frequency                                  |                       |                   | 243               | 157               |                   |

- (v) Use your table to calculate an estimate of the mean.
- (vi) The standard deviation of the temperatures in degrees Celsius is 0.379. The temperatures are converted from degrees Celsius into degrees Fahrenheit using the formula F = 1.8C + 32. Hence estimate the mean and find the standard deviation of the temperatures in degrees Fahrenheit. [3]

[2]

[3]

- 7 An online shopping company takes orders through its website. On average 80% of orders from the website are delivered within 24 hours. The quality controller selects 10 orders at random to check when they are delivered.
  - (i) Find the probability that
    - (A) exactly 8 of these orders are delivered within 24 hours, [3]
    - (B) at least 8 of these orders are delivered within 24 hours. [2]

The company changes its delivery method. The quality controller suspects that the changes will mean that fewer than 80% of orders will be delivered within 24 hours. A random sample of 18 orders is checked and it is found that 12 of them arrive within 24 hours.

- (ii) Write down suitable hypotheses and carry out a test at the 5% significance level to determine whether there is any evidence to support the quality controller's suspicion. [7]
- (iii) A statistician argues that it is possible that the new method could result in either better or worse delivery times. Therefore it would be better to carry out a 2-tail test at the 5% significance level. State the alternative hypothesis for this test. Assuming that the sample size is still 18, find the critical region for this test, showing all of your calculations. [7]

## **BLANK PAGE**

#### **BLANK PAGE**



Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

8

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

## 4766 Statistics 1

Section A

| Q1<br>(i) | (With $\sum fx = 7500$ and $\sum f = 10000$ then arriving at the                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|           | mean)(i)£0.75 scores (B1, B1)(ii)75p scores (B1, B1)(iii)0.75p scores (B1, B0) (incorrect units)(iv)£75 scores (B1, B0) (incorrect units)After B0, B0then sight of $\frac{7500}{10000}$ scores SC1. SC1or an answerin the range £0.74 - £0.76 or 74p - 76p (both inclusive) scoresSC1 (units essential to gain this mark)                                                                                               | B1 for numerical mean<br>(0.75 or 75 seen)<br>B1dep for correct units<br>attached                                                                                                                                                          |   |
|           | <ul> <li>Standard Deviation: (CARE NEEDED here with close proximity of answers)</li> <li>50.2(0) using divisor 9999 scores B2 (50.20148921)</li> <li>50.198 (= 50.2) using divisor 10000 scores B1(<i>rmsd</i>)</li> <li>If divisor is <u>not</u> shown (or calc used) and only an answer of 50.2 (i.e. <u>not</u> coming from 50.198) is seen then award B2 on b.o.d. (default)</li> </ul>                             | B2 correct s.d.<br>(B1) correct rmsd<br>(B2) default                                                                                                                                                                                       |   |
|           | After B0 scored then an attempt at $S_{xx}$ as evident by either<br>$S_{xx} = (5000 + 200000 + 25000000) - \frac{7500^2}{10000}$ (= 25199375)<br>or<br>$S_{xx} = (5000 + 200000 + 25000000) - 10000(0.75)^2$<br>scores (M1) or M1ft 'their 7500 <sup>2</sup> ' or 'their 0.75 <sup>2</sup> '<br>NB The <u>structure</u> must be correct in both above cases with a max<br>of <u>1 slip only after applying the f.t.</u> | $\sum fx^2 = 25,205,000$<br>Beware $\sum x^2 = 25,010,100$<br>After B0 scored then<br>(M1) or M1f.t. for<br>attempt at $S_{xx}$<br>NB full marks for correct<br>results from recommended<br>method which is use of<br>calculator functions | 4 |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( <b>ii</b> ) | P(Two £10 or two £100)                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | $-50 \times 49 \times 20 \times 19$                                                                                                                                                        | M1 for either correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | $-\frac{1}{10000} \times \frac{1}{9999} + \frac{1}{10000} \times \frac{1}{9999}$                                                                                                           | product seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | = 0.0000245 + 0.0000038 = (0.00002450245 + 0.00000380038)                                                                                                                                  | M1 sum of both correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| After M0, M0 then $\frac{50}{10000} \times \frac{50}{10000} \times \frac{20}{10000} \times \frac{20}{10000}$ o.e.       Al CAO (as opposite with no rounding)       3         Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9 × 10 <sup>-5</sup> o.e.)       Similarly, $\frac{50}{10000} \times \frac{49}{10000} \times \frac{49}{10000} \times \frac{19}{10000}$ scores SC1       SC1 case #1)       (SC1 case #2) CARE mawer is also 2.83 \times 10^{-5}       7         Image: Solid score scor                                                                                                                                                                                                                                                                                                 |               | = 0.000028(3)  o.e. = (0.00002830283)                                                                                                                                                      | (ignore any multipliers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Intervision with 10000 $^{-1}$ 10000 $^{-1}$ 10000 $^{-1}$ 10000 $^{-1}$ with no rounding)       with no rounding)       3         Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9 × 10 $^{-5}$ o.c.)       Similarly, $\frac{50}{10000} \times \frac{49}{10000} \times \frac{49}{10000} \times \frac{19}{10000}$ scores SC1       (SC1 case #1)       (SC1 case #2) CARE answer is also 2.83 × 10 $^{-5}$ 7         Q2       (i)       Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$ M1 for 6! Or 720 (sice) or product of fractions A1 CAO (accept 0.0014)       2         (ii)       Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ M1 for denominators       M1 for or enominators       3         (iii)       Either P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for for $\frac{1}{3}$ or $20$ size       3         (iii)       Either P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for $1/\binom{6}{3}$ or $20$ size       3         (iii) $p = 0.55$ B1 cao       1       1         (iii) $p = 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma^2 p$ (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors)       1         (iii) $E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ M1 for $\Sigma^2 p$ (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors)       A1 cao (no 'n' or 'n-1' divisors) $Var($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | After M0 M0 then $\frac{50}{50} \times \frac{50}{50} + \frac{20}{50} \times \frac{20}{50}$ o.e.                                                                                            | A1 CAO (as opposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Scores SC1 (ignore final answer but SC1 may be implied by<br>Sight of 2.9 × 10 <sup>-5</sup> o.e.)<br>Similarly, $\frac{50}{10000} \times \frac{49}{10000} + \frac{20}{10000} \times \frac{19}{10000}$ scores SC1<br>SC1 case #1)<br>(SC1 case #2) <u>CARE</u> answer<br>is also 2.83 × 10 <sup>-2</sup><br>TOTAL <b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | <u>10000</u> 10000 10000 10000 10000                                                                                                                                                       | with no rounding)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| sight of 2.9 × 10 <sup>-5</sup> o.c.)<br>Similarly, $\frac{50}{10000} \times \frac{49}{10000} + \frac{20}{10000} \times \frac{19}{10000}$ scores SC1<br>(SC1 case #1)<br>(SC1 case #2) <u>CARE</u> answer<br>is also 2.83 × 10 <sup>-5</sup><br>TOTAL <b>7</b><br><b>Q2</b><br>(i) Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$<br>or P(all correct) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$<br><b>X</b> TOTAL <b>7</b><br>M1 for 6! Or 720 (sicc)<br>or product of fractions<br>A1 CAO (accept 0.0014)<br><b>2</b><br>(ii) Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} = \frac{1}{20}$<br>(iii) E(X) = 0 × 0.55 + 1 × 0.1 + 2 × 0.05 + 3 × 0.05 + 4 × 0.25 = 1.35<br>E(X <sup>2</sup> ) = 0 × 0.55 + 1 × 0.1 + 2 × 0.05 + 3 × 0.05 + 4 × 0.25 = 1.35<br>E(X <sup>2</sup> ) = 0 × 0.55 + 1 × 0.1 + 4 × 0.05 + 9 × 0.05 + 16 × 0.25<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>= (4.75)<br>Var(X) = 'their' 4.75 - 1.35 <sup>2</sup> = 2.9275 awfw (2.9275 - 2.93)<br>(iii) P(At least 2 both times) = (0.05+0.05+0.25) <sup>2</sup> = 0.1225 o.e.<br>N1 for (0.05+0.05+0.25) <sup>2</sup><br>O(0.05+0.05+0.25) <sup>2</sup> = 0.1225 o.e.<br>(iv) O(0.05+0.05+0.25) <sup>2</sup> = 0.1225 o.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Scores SC1 (ignore final answer but SC1 may be implied by                                                                                                                                  | $(\mathbf{SC}_{1}, \mathbf{a}, \mathbf{a}$ | 3 |
| Similarly, $\frac{50}{10000} \times \frac{49}{10000} \times \frac{19}{10000} \times \frac{19}{10000}$ scores SC1       (SC1 case #2) <u>CARE</u> answer is also 2.83 × 10 <sup>-3</sup> Q2<br>(i)       Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$ M1 for 6! Or 720 (sioc) or product of fractions A1 CAO (accept 0.0014)       2         (ii)       Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ M1 for of enominators A1 CAO (accept 0.0014)       2         (iii)       Either P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for denominators or 3! A1 CAO       3         or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ Or M1 for $\binom{6}{3}$ or 20 since M1 for numerators or 3! A1 CAO       3         (ii) $p = 0.55$ B1 cao       1         (iii) $p = 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma rp$ (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors)       1 $p = 0.55 + 1 \times 0.1 + 2 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ M1 for $\Sigma rp$ (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors)       1 $F(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ M1 for $\Sigma rp$ (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors)       1 $F(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ M1 for $(0.05 + 0.50 + 0.25)^2$ or $(0.35^2 seen A1 + 0.2 + 0.45 + 4)$ 1       1 $F(X^2) = 0 \times 0.55 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | sight of $2.9 \times 10^{-3}$ o.e.)                                                                                                                                                        | (SC1  case  #1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Image: Constraint of the equation of the equat                                                                                                                                                                                                                                                     |               | Similarly, $\frac{50}{3} \times \frac{49}{3} + \frac{20}{3} \times \frac{19}{3}$ scores SC1                                                                                                | (SC1 case #2) <u>CARE</u> answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Q2<br>(i)         TOTAL         TOTAL         T           Q2<br>(i)         Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$<br>or P(all correct) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$ M1 for 6! Or 720 (sice)<br>or product of fractions<br>A1 CAO (accept 0.0014)         2           (ii)         Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for denominators<br>M1 for numerators or 3!<br>A1 CAO         3           (iii)         Either P(picks T, O, M) = $\frac{1}{6} = \frac{1}{20}$ M1 for 1/( $\frac{6}{3}$ ) or 20 since<br>M1 for 1/( $\frac{6}{3}$ ) or 20 since<br>M1 for 1/( $\frac{6}{3}$ )         3           (ii) $p = 0.55$ B1 cao         1           (iii) $E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(in 'n' or 'n-1'<br>divisors)         M1 for $\Sigma^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(in 'n' or 'n-1'<br>divisors)         M1 for $\Sigma^2 p$ (at least 3<br>non zero terms correct)<br>A1 cao (no 'n' or 'n-1'<br>divisors)         M1 for $(0.5 + 0.6 + 0.25)^2$<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>$= (4.75)$ M1 for $(0.5 + 0.6 + 0.25)^2$<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>$= (4.75)$ M1 for $(0.05 + 0.05 + 0.25)^2$<br>$Or 0.35^2 seenA1 cao (no 'n' or 'n-1'divisors)         5           (iii)         P(At least 2 both times) = (0.05 + 0.05 + 0.25)^2 = 0.1225 o.e.         M1 for (0.05 + 0.05 + 0.25)^2Or 0.35^2 seenA1 cao (no 'n' or 'n-1'divisor)         5  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 10000 10000 10000 10000                                                                                                                                                                    | is also $2.83 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Q1<br>(i)       Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$<br>or P(all correct) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$ M1 for 6! Or 720 (sice)<br>or product of fractions<br>A1 CAO (accept 0.0014)       2         (ii)       Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for denominators<br>M1 for numerators or 3!<br>A1 CAO       3         (ii)       Either P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for for numerators or 3!<br>A1 CAO       3         (iii) $p = 0.55$ B1 cao       1         (iii) $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma^{2}p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)       M1 for $\Sigma^{2}p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)       M1 for $\Sigma^{2}p$ (at least 3<br>non zero terms correct)<br>A1 cao (no 'n' or 'n-1'<br>divisors)       5         (iii)       P(At least 2 both times) = $(0.05+0.05+0.25)^{2} = 0.1225$ o.e.       M1 for $(0.05+0.05+0.25)^{2}$<br>or $0.35'$ seen<br>Alcao: any(W (0.1225-<br>0) $1/3 \times \sigma d/dO0$ S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                            | ΤΟΤΑΙ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 |
| Q2Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$ M1 for 6! Or 720 (sice) or product of fractions<br>A1 CAO (accept 0.0014)2(ii)Either P(picks T, O, M) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$ M1 for denominators<br>M1 for numerators or 3!<br>A1 CAO (accept 0.0014)2(iii)Either P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for denominators3(iii)Either P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for numerators or 3!<br>A1 CAO3(iii) $P(picks T, O, M) = \frac{1}{6} \times \frac{1}{3} \times \frac{1}{20} = \frac{1}{20}$ M1 for $1/\binom{6}{3}$ or 20 size<br>M1 for $1/\binom{6}{3}$ 3(iii) $P(x) = 0.55$ B1 cao1(iii) $E(X) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $(0.5 + 0.5 + 0.5)^2$ (iii) $P(At least 2 both times) = (0.05 + 0.05 + 0.25)^2 = 0.1225 \text{ o.e.}$ M1 for $(0.05 + 0.05 + 0.25)^2$<br>or $0.35^2 seen$<br>A1 cao (no 'n' or 'n-1'<br>divisors)M1 for $(0.05 + 0.05 + 0.25)^2$<br>or $0.35^2 seen$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02            |                                                                                                                                                                                            | IOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / |
| Observe to the form of the second                                                                                                                                                                                                                                                     | (i)           | Either P(all correct) = $\frac{1}{1} \times \frac{1}{2} = \frac{1}{122}$ | M1 for 6! Or 720 (sioc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| or P(all correct) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$ A1 CAO (accept 0.0014)2(ii)Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ M1 for denominatorsM1 for numerators or 3!or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for numerators or 3!3or P(picks T, O, M) = $\frac{1}{6} = \frac{1}{20}$ Or M1 for $\binom{6}{3}$ or 20 sinceM1 for 1/ $\binom{6}{3}$ 3 $\frac{Q3}{(i)}$ $p = 0.55$ B1 cao1 $(ii)$ $E(X) =$ N1 for $\sum p$ (at least 3)1 $0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\sum p^2$ (at least 3)1 $(iii)$ $E(X) =$ $0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ M1 for $\sum p^2$ (at least 3)1 $Var(X) = "their" 4.75 - 1.35^2 = 2.9275 awfw (2.9275 - 2.93)$ M1 for $\sum p^2$ (at least 3)1 $(iii)$ P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.M1 for $(0.05+0.05+0.25)^2$ 3 $(iii)$ P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.M1 for $(0.05+0.05+0.25)^2$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)           | 6 5 4 3 2 1 720                                                                                                                                                                            | or product of fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| (ii)Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ M1 for denominatorsor P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for numerators or 3!<br>A1 CAOM1 for numerators or 3!<br>A1 CAOor P(picks T, O, M) = $\frac{1}{6} (\frac{1}{3}) = \frac{1}{20}$ M1 for $1/(\frac{6}{3})$<br>A1 CAOM1 for $1/(\frac{6}{3})$<br>A1 CAO3 $\frac{0}{10}$ $\frac{1}{6} (\frac{1}{3}) = \frac{1}{20}$ M1 for $1/(\frac{6}{3})$<br>A1 CAO $\frac{1}{10}$ $\frac{0}{10}$ $\frac{1}{6} (\frac{1}{3}) = \frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{10} (\frac{1}{3}) = \frac{1}{20}$ $\frac{0}{10}$ $\frac{1}{6} (\frac{1}{3}) = \frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{10} (\frac{1}{3}) = \frac{1}{20}$ $\frac{0}{10}$ $\frac{1}{6} (\frac{1}{3}) = \frac{1}{20}$ $\frac{1}{10} (\frac{1}{3}) = \frac{1}{20}$ $\frac{1}{10} (\frac{1}{3}) = \frac{1}{20}$ $\frac{0}{10}$ $\frac{1}{6} (\frac{1}{3}) = \frac{1}{20}$ $\frac{1}{10} (\frac{1}{3}) = \frac{1}{20}$ $\frac{1}{10} (\frac{1}{10}) = \frac{1}{10} (\frac{1}{3}) = \frac{1}{20}$ $\frac{0}{10}$ $\frac{1}{6} (\frac{1}{3}) = \frac{1}{20}$ $\frac{1}{10} (\frac{1}{3}) = \frac{1}{20}$ $\frac{1}{10} (\frac{1}{10}) = \frac{1}{10} (\frac{1}{3}) = \frac{1}{20} (\frac{1}{3}) = $ |               | or P(all correct) = $\frac{1}{1} = \frac{1}{1} = 0.00139$                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| (ii)Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for denominators<br>M1 for numerators or 3!<br>A1 CAO3or P(picks T, O, M) = $\frac{1}{6} = \frac{1}{20}$ Or M1 for $\binom{6}{3}$ or 20 sice<br>M1 for $1/\binom{6}{3}$<br>A1 CAO3 <b>i</b> $p = 0.55$ B1 cao1(ii) $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1')<br>divisors)E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>= (4.75)M1 for $\Sigma r^2p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1')<br>divisors)War(X) = 'their' 4.75 - 1.35^2 = 2.9275 awfw (2.9275 - 2.93)M1 for (0.05+0.05+0.05+0.25)^2<br>or 0.35^2 seen<br>A1 cao (no 'n' or 'n-1')<br>divisors)(iii)P(At least 2 both times) = (0.05+0.05+0.25)^2 = 0.1225 o.e.M1 for (0.05+0.05+0.25)^2<br>or 0.35^2 seen<br>A1 cao avfw (0.1225 -<br>0.123 or 0.40400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 6! 720                                                                                                                                                                                     | A1 CAO (accept 0.0014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |
| (ii)Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$<br>or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ M1 for denominators<br>M1 for numerators or 3!<br>A1 CAO3(ii) $p = 0.55$<br>(iii)B1 cao1(iii) $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$<br>$= 0 + 0.1 + 0.2 + 0.45 + 4$<br>$= (4.75)$ M1 for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1')<br>divisors)3(iii) $E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>$= 0 + 0.1 + 0.2 + 0.45 + 4$<br>$= (4.75)$ M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1')<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1')<br>divisors)5(iii)P(At least 2 both times) = $(0.05 + 0.05 + 0.25)^2 = 0.1225$ o.e.M1 for $(0.05 + 0.05 + 0.05 + 0.25)^2$<br>or $0.35^2$ seen<br>A1 cao (no 'n' or 'n-1')<br>divisors)M1 for $(0.05 + 0.05 + 0.25)^2$<br>or $0.35^2$ seen<br>A1 cao (no 'n' or 'n-1')<br>divisors)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (**)          |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| a1 + 1 + 2 + 0 + 6 + 5 + 4 + 20Millitor denominatorsor P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ Millifor numerators or 3!<br>A1 CAO3or P(picks T, O, M) = $\frac{1}{\binom{6}{3}} = \frac{1}{20}$ Or M1 for $\binom{6}{3}$ or 20 since<br>M1 for $1/\binom{6}{3}$<br>A1 CAO3 $\frac{\mathbf{Q3}}{(\mathbf{i})}$ $p = 0.55$ B1 cao $1$ $\mathbf{(ii)}$ $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ B1 cao $1$ $\mathbf{(ii)}$ $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>$= 0 + 0.1 + 0.2 + 0.45 + 4$<br>$= (4.75)$ Mill for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>All cao (no 'n' o' 'n-1')<br>divisors)Mill for $\Sigma rp' p$ (at least 3<br>non zero terms correct)<br>All cao (no 'n' o' 'n-1')<br>divisors)(iii)P(At least 2 both times) = $(0.05 + 0.05 + 0.25)^2 = 0.1225$ o.e.Mill for $(0.05 + 0.05 + 0.25)^2$<br>or $0.35^2$ seen<br>All cao (no 'n' or 'n-1')<br>divisors)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (II)          | Either P(picks T, O, M) = $\frac{3}{2} \times \frac{2}{2} \times \frac{1}{2} = \frac{1}{2}$                                                                                                | M1 for denominators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ MI for numerators or $3!$<br>A1 CAOMI for numerators or $3!$<br>A1 CAO3or P(picks T, O, M) = $\frac{1}{\binom{6}{3}} = \frac{1}{20}$ MI for $\binom{6}{3}$ or $20$ size<br>MI for $1/\binom{6}{3}$ or $20$ size<br>A1 CAO3(i) $p = 0.55$ B1 cao1(ii) $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ MI for $\Sigma p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)MI for $\Sigma p^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)MI for $\Sigma p^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)MI for $\Sigma p^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)MI for $\Sigma p^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)MI for $\Sigma p^2 p$ (at least 3<br>non zero terms correct)<br>A1 cao (no 'n' or 'n-1'<br>divisors)MI for $\Sigma p^2 p$ (at least 3<br>non zero terms correct)<br>A1 cao (no 'n' or 'n-1'<br>divisors)MI for $\Sigma p^2 p$ (at least 3<br>non zero terms correct)<br>A1 cao (no 'n' or 'n-1'<br>divisors)S(iii)P(At least 2 both times) = (0.05+0.05+0.25)^2 = 0.1225 o.e.MI for $(0.05+0.05+0.25)^2$<br>or $0.35^2$ seen<br>A1 cao: awfw (0.1225 -<br>0.123) or $40/200$ MI for $(0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 - 0.1225 -$                                                                                                                                                                                                                                                                                                                                                                                                             |               | 6 5 4 20                                                                                                                                                                                   | WIT for denominators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | or P(nicks T O M) $-\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{3!}{2} - \frac{1}{2}$                                                                                   | M1 for numerators or 3!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| or P(picks T, O, M) = $\frac{1}{\binom{6}{3}} = \frac{1}{20}$ Or M1 for $\binom{6}{3}$ or 20 size<br>M1 for $1/\binom{6}{3}$<br>A1 CAO3Q3<br>(i) $p = 0.55$ B1 cao1Q3<br>(ii) $p = 0.55$ B1 cao1(iii) $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>M1 dep for - their E(X)2<br>provided Var(X) > 0(iii)P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.M1 for $(0.05+0.05+0.25)^2$<br>or $0.35^2$ seen<br>A1 cao (ano 'n' or 'n-1'<br>divisors)3(iii)P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.M1 for $(0.05+0.05+0.25)^2$<br>or $0.32^3$ or $40/400$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | $6^{-5} + 4^{-5} = 20$                                                                                                                                                                     | A1 CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| of P(pICKS 1, O, M) = $\frac{6}{3} = \frac{20}{20}$ Or M1 for $\lfloor \frac{3}{3} \rfloor$ or 20 sinc<br>M1 for $1/{6 \choose 3}$<br>A1 CAOQ3<br>(i) $p = 0.55$ TOTAL5Q3<br>(ii) $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ B1 cao1M1 for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25 = 0 + 0.1 + 0.2 + 0.45 + 4 = (4.75)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>M1 dep for - their E(X) 2<br>provided Var(X) > 0<br>A1 cao (no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>M1 dep for - their E(X) 2<br>provided Var(X) > 0(iii)P(At least 2 both times) = (0.05+0.05+0.25)^2 = 0.1225 o.e.M1 for (0.05+0.05+0.25)^2<br>or 0.35^3 seen<br>A1 cao: awfw (0.1225 -<br>0.123) or 49/4000M1 for (0.1225 -<br>0.123) or 49/400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                                                                                            | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 |
| (3)M1 for $1/{\binom{6}{3}}$<br>A1 CAOM1 for $1/{\binom{6}{3}}$<br>A1 CAO(3)M1 for $1/{\binom{6}{3}}$<br>A1 CAOM1 for $1/{\binom{6}{3}}$<br>A1 CAO(3) $p = 0.55$ B1 cao1(4) $p = 0.55$ B1 cao1(ii) $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>M1 dep for - their E(X)²<br>provided Var(X) > 0(iii) $E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>$= 0 + 0.1 + 0.2 + 0.45 + 4$<br>$= (4.75)$ M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>M1 dep for - their E(X)²<br>provided Var(X) > 0M1 dep for - their E(X)²<br>provided Var(X) > 0(iii) $P(At least 2 both times) = (0.05 + 0.05 + 0.25)^2 = 0.1225 \text{ o.e.}$ M1 for $(0.05 + 0.05 + 0.25)^2$<br>or $0.35^2$ seen<br>A1 cao: awfw $(0.1225 - 0.123)$ or $49/400$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | or P(picks 1, 0, M) = $\frac{1}{(6)} = \frac{1}{20}$                                                                                                                                       | Or M1 for $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ or 20 sioc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Image: Nime of the initial system of the initis of the initis and the i                                                                                                                                                                                                                                      |               |                                                                                                                                                                                            | M1 for $1/(6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| A1 CAOTOTAL5Q3<br>(i) $p = 0.55$ B1 cao1(ii) $E(X) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)5(iii) $P(At least 2 both times) = (0.05 + 0.05 + 0.25)^2 = 0.1225 \text{ o.e.}$ M1 for $(0.05 + 0.05 + 0.25)^2$<br>or $0.35^2$ seen<br>A1 cao: awfw $(0.1225 - 0.123)$ or $49/400$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | $(\mathbf{J})$                                                                                                                                                                             | $\left  \frac{1}{3} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Image: Constraint of the integration of the integratex of the integration of the integration of the int                                                                                                                                                                                                                                             |               |                                                                                                                                                                                            | A1 CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| Q3<br>(i) $p = 0.55$ B1 cao1(ii) $E(X) =$<br>$0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors) $E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>$= 0 + 0.1 + 0.2 + 0.45 + 4$<br>$= (4.75)$ M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>M1 dep for - their E(X)2<br>provided Var(X) > 0Var(X) = 'their' 4.75 - 1.35^2 = 2.9275 awfw (2.9275 - 2.93)M1 for (0.05+0.05+0.25)^2<br>or 0.35^2 seen<br>A1 cao (no 'n' or 'n-1'<br>divisors)5(iii)P(At least 2 both times) = (0.05+0.05+0.25)^2 = 0.1225 o.e.M1 for (0.05+0.05+0.25)^2<br>or 0.35^2 seen<br>A1 cao: awfw (0.1225 -<br>0.123) or 49/4002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                            | ΤΟΤΑΙ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                            | IOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 |
| (i) $p = 0.55$ B1 cao1(ii) $E(X) = \\ 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ M1 for $\Sigma rp$ (at least 3<br>non zero terms correct)<br>A1 CAO(no 'n' or 'n-1'<br>divisors)M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct)<br>M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct) $E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>$= 0 + 0.1 + 0.2 + 0.45 + 4$<br>$= (4.75)$ M1 for $\Sigma r^2 p$ (at least 3<br>non zero terms correct) $War(X) = 'their' 4.75 - 1.35^2 = 2.9275$ awfw (2.9275 - 2.93)M1 for (0.05 + 0.05 + 0.25)^2<br>provided Var(X) > 0 $A1$ cao (no 'n' or 'n-1'<br>divisors)5(iii) $P(At least 2 both times) = (0.05 + 0.05 + 0.25)^2 = 0.1225 \text{ o.e.}$ M1 for (0.05 + 0.05 + 0.25)^2<br>or $0.35^2$ seen<br>A1 cao: awfw (0.1225 -<br>0.123) or $49/400$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q3            | 0.55                                                                                                                                                                                       | D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| (ii) $E(X) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$<br>$E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>= (4.75)<br>$Var(X) = 'their' 4.75 - 1.35^{2} = 2.9275 \text{ awfw} (2.9275 - 2.93)$<br>(iii) $P(At \text{ least 2 both times}) = (0.05 + 0.05 + 0.25)^{2} = 0.1225 \text{ o.e.}$<br>$M1 \text{ for } \Sigma r^{2} p \text{ (at least 3 non zero terms correct)}$<br>$M1 \text{ for } \Sigma r^{2} p \text{ (at least 3 non zero terms correct)}$<br>$M1 \text{ for } \Sigma r^{2} p \text{ (at least 3 non zero terms correct)}$<br>$M1 \text{ dep for - their } E(X)^{2} provided \text{ Var}(X) > 0$<br>$A1 \text{ cao (no 'n' or 'n-1' divisors)} = (0.05 + 0.05 + 0.25)^{2} = 0.1225 \text{ o.e.}$<br>$M1 \text{ for } (0.05 + 0.05 + 0.25)^{2} = 0.1225 \text{ o.e.}$<br>$M1 \text{ for } (0.05 + 0.05 + 0.25)^{2} = 0.1225 \text{ o.e.}$<br>$M1 \text{ for } (0.05 + 0.05 + 0.25)^{2} = 0.1225 \text{ o.e.}$<br>M1  for  (0.1225 - 0.1225  o.e.<br>M1  for  (0.1225 - 0.123  or  49/400<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1)           | p = 0.55                                                                                                                                                                                   | BI cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <b>ii</b> ) | E(X) =                                                                                                                                                                                     | M1 for $\Sigma rp$ (at least 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| $E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>= (4.75)<br>Var(X) = 'their' 4.75 - 1.35^{2} = 2.9275 awfw (2.9275 - 2.93)<br><b>(iii)</b> P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>M1 for (0.05+0.05+0.25)^{2} = 0.1225 o.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | $0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$                                                                                                      | non zero terms correct)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| $E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>= (4.75)<br>Var(X) = 'their' 4.75 - 1.35^{2} = 2.9275 awfw (2.9275 - 2.93)<br>(iii) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(iii) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(11) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(12) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(13) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(14) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.(15) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.(15) P(At least 2 both times) = (0.05+0.05+0.05+0.05+0.05+0.05+0.05+0.05                                                                                                                                                                                           |               |                                                                                                                                                                                            | Al CAO(no 'n' or 'n-l'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| $E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>= (4.75)<br>Var(X) = 'their' 4.75 - 1.35^{2} = 2.9275 awfw (2.9275 - 2.93)<br>(iii) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>M1 for (0.1225 - 0.123) or 49/400<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                            | divisors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| $E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$<br>= 0 + 0.1 + 0.2 + 0.45 + 4<br>= (4.75)<br>Var(X) = 'their' 4.75 - 1.35^{2} = 2.9275 awfw (2.9275 - 2.93)<br>Var(X) = 'their' 4.75 - 1.35^{2} = 2.9275 awfw (2.9275 - 2.93)<br>(iii) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>(iii) P(At least 2 both times) = (0.05+0.05+0.25)^{2} = 0.1225 o.e.<br>Al cao (no 'n' or 'n-1'<br>divisors)<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                            | M1 for $\Sigma r^2 p$ (at least 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| $\begin{array}{c c} = & 0 + 0.1 + 0.2 + 0.45 + 4 \\ = & (4.75) \\ Var(X) = & (their)^{2} 4.75 - 1.35^{2} = 2.9275 \text{ awfw} (2.9275 - 2.93) \\ Var(X) = & (their)^{2} 4.75 - 1.35^{2} = 2.9275 \text{ awfw} (2.9275 - 2.93) \\ A1 & (continuent on the content on the content of the content on the content of the cont$                                                                                                                                                                                             |               | $E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$                                                                                                 | non zero terms correct)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| $ \begin{array}{c c} = (4.75) \\ Var(X) = `their` 4.75 - 1.35^2 = 2.9275 a wfw (2.9275 - 2.93) \\ \hline M1 dep for - their E(X)^2 \\ provided Var(X) > 0 \\ A1 cao (no `n' or `n-1' \\ divisors) \\ \hline 5 \end{array} $ $ \begin{array}{c c} \textbf{(iii)} \\ P(At least 2 both times) = (0.05 + 0.05 + 0.25)^2 = 0.1225 o.e. \\ M1 for (0.05 + 0.05 + 0.25)^2 = 0.1225 o.e. \\ A1 cao: a wfw (0.1225 - 0.123) or 49/400 \\ A1 cao: a wfw (0.1225 - 0.123) or 49/400 \\ \hline 2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | = 0 + 0.1 + 0.2 + 0.45 + 4                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Var(X) = 'their' $4.75 - 1.35^2 = 2.9275$ awfw $(2.9275 - 2.93)$ provided Var(X) > 0A1 cao (no 'n' or 'n-1'<br>divisors)A1 cao (no 'n' or 'n-1'<br>divisors)5(iii)P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.M1 for $(0.05+0.05+0.25)^2$<br>or $0.35^2$ seen<br>A1 cao: awfw $(0.1225 - 0.123)$ or $49/400$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | = (4.75)                                                                                                                                                                                   | M1dep for – their $E(X)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Var(X) = 'their' $4.75 - 1.35^2 = 2.9275$ awtw $(2.9275 - 2.93)$ A1 cao (no 'n' or 'n-1' divisors)         (iii)       P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.       M1 for $(0.05+0.05+0.25)^2$ or $0.35^2$ seen         A1 cao: awfw $(0.1225 - 0.123)$ or $49/400$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                                                                                                                                                                            | provided Var( $X$ ) > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| In case (nor nor nor nor nor nor nor nor nor nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | $\operatorname{var}(\mathbf{X}) = \operatorname{their} 4.75 - 1.35^2 = 2.9275 \text{ awfw} (2.9275 - 2.93)$                                                                                | A1 cao (no 'n' or 'n-1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| (iii)       P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.       M1 for $(0.05+0.05+0.25)^2$ or $0.35^2$ seen       M1 for $(0.1225 - 0.1225)^2$ or $49/400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                            | divisors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| (iii) P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e. M1 for $(0.05+0.05+0.25)^2$<br>or $0.35^2$ seen<br>A1cao: awfw $(0.1225 - 0.123)$ or $49/400$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 |
| or $0.35^2$ seen<br>A1cao: awfw (0.1225 -<br>0.123) or $49/400$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (iii)         | P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.                                                                                                                              | M1 for $(0.05+0.05+0.25)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| $\begin{array}{c c} A1cao. awiw (0.1225 - \\ 0.123) \text{ or } 49/400 \end{array} = 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                            | or $0.35^{\circ}$ seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                                                                                                                                                                            | 0.123) or 49/400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 |

| TOTAL | 8 |
|-------|---|
| IOTH  | 0 |

| Q4        | $X \sim B(50, 0.03)$                                                                                                                                                                                                   |                                                                                                                      |   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---|
| (1)       | (A) $P(X = 1) = {\binom{50}{1}} \times 0.03 \times 0.97^{49} = 0.3372$                                                                                                                                                 | M1 $0.03 \times 0.97^{49}$ or $0.0067(4)$                                                                            |   |
|           |                                                                                                                                                                                                                        | M1 $\binom{50}{1} \times pq^{49}$ (p+q                                                                               |   |
|           |                                                                                                                                                                                                                        | =1)<br>A1 CAO<br>(awfw 0. 337 to 0. 3372)                                                                            | 3 |
|           | (B) $P(X = 0) = 0.97^{50} = 0.2181$<br>P(X > 1) = 1 - 0.2181 - 0.3372 = 0.4447                                                                                                                                         | or<br>0.34(2s.f.) or 0.34(2d.p.)<br>but not just 0.34                                                                |   |
|           | $(X \times I) = 1  0.2101  0.3372 = 0.1117$                                                                                                                                                                            | B1 for $0.97^{50}$ or $0.2181$<br>(awfw 0.218 to 0.2181)<br>M1 for<br>1 - ( 'their' p (X = 0) +<br>'their' p(X = 1)) | 3 |
|           |                                                                                                                                                                                                                        | must have both probabilities<br>A1 CAO<br>(awfw 0.4447 to 0.445)                                                     |   |
| (ii)      | Expected number = $np = 240 \times 0.3372 = 80.88 - 80.93 = (81)$<br>Condone 240 × 0.34 = 81.6 = (82) but for M1 Alf.t.                                                                                                | M1 for 240×prob (A)<br>A1FT                                                                                          | 2 |
|           |                                                                                                                                                                                                                        | TOTAL                                                                                                                | 8 |
| Q5<br>(i) | P(R) × P(L) = $0.36 \times 0.25 = 0.09 \neq P(R \cap L)$<br>Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09<br>≠ 0.2 or $\neq p(R \cap L)$ so not independent)                                | M1 for $0.36 \times 0.25$ or<br>0.09 seen<br>A1 (numerical<br>justification needed)                                  | 2 |
| (ii)      | R L                                                                                                                                                                                                                    | G1 for two overlapping circles labelled                                                                              |   |
|           | .16 (0.2) 0.05                                                                                                                                                                                                         | G1 for 0.2 and either 0.16 <i>or</i> 0.05 in the <b>correct places</b>                                               |   |
|           | 0.59                                                                                                                                                                                                                   | G1 for all 4 <b>correct</b><br>probs in the <b>correct</b><br>places (including the 0.59)                            | 3 |
|           |                                                                                                                                                                                                                        | The last two G marks are independent of the labels                                                                   |   |
| (111)     | $P(L \mid R) = \frac{P(L \cap R)}{P(R)} = \frac{0.2}{0.36} = \frac{5}{9} = 0.556 \text{ (awrt 0.56)}$                                                                                                                  | M1 for 0.2/0.36 o.e.<br>A1 cao                                                                                       |   |
|           | This is the probability that Anna is late given that it is raining.<br>(must be in context)<br>Condone 'if ' or 'when' or 'on a rainy day' for 'given that' but <u>not</u> the words<br>'and' or 'because' or 'due to' | E1 (indep of M1A1)<br>Order/structure <u>must</u> be<br>correct i.e. no reverse<br>statement                         | 3 |
|           |                                                                                                                                                                                                                        | ΤΟΤΑΙ                                                                                                                | 0 |
|           |                                                                                                                                                                                                                        | IOTAL                                                                                                                | ð |

## Section B

| Q6           | Median = 4.06 – 4.075 (inclusive)                                                                                                                                                                                                                                                                                                                | B1cao                                                                                                                                                         |    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (1)          | $Q_1 = 3.8$<br>$Q_3 = 4.3$                                                                                                                                                                                                                                                                                                                       | B1 for $Q_1$ (cao)<br>B1 for $Q_3$ (cao)                                                                                                                      |    |
|              | Inter-quartile range = $4.3 - 3.8 = 0.5$                                                                                                                                                                                                                                                                                                         | B1 ft for IQR must be<br>using t-values not<br>locations to earn this<br>mark                                                                                 | 4  |
| (ii)         | Lower limit ' their $3.8' - 1.5 \times$ 'their $0.5' = (3.05)$<br>Upper limit ' their $4.3' + 1.5 \times$ 'their $0.5' = (5.05)$<br>Very few if any temperatures <u>below 3.05 (but not zero)</u><br>None <u>above 5.05</u><br>'So few, if any outliers' scores SC1                                                                              | B1ft: must have -1.5<br>B1ft: must have +1.5<br>E1ft dep on -1.5 and $Q_1$<br>E1ft dep on+1.5 and $Q_3$<br>Again, must be using t-<br>values NOT locations to | 4  |
| (iii)        | Valid argument such as 'Probably not, because there is nothing<br>to suggest that they are not genuine data items; (they do not<br>appear to form a separate pool of data.')<br>Accept: exclude outlier – 'measuring equipment was wrong' or<br>'there was a power cut' or ref to hot / cold day<br>[Allow suitable valid alternative arguments] | E1                                                                                                                                                            | 1  |
| (iv)         | Missing frequencies 25, 125, 50                                                                                                                                                                                                                                                                                                                  | B1, B1, B1 (all cao)                                                                                                                                          | 3  |
| ( <b>v</b> ) | $Mean = (3.2 \times 25 + 3.6 \times 125 + 4.0 \times 243 + 4.4 \times 157 + 4.8 \times 50)/600$ $= 2432.8/600 = 4.05(47)$                                                                                                                                                                                                                        | M1 for at least 4<br>midpoints correct and<br>being used in attempt to<br>find $\sum ft$                                                                      | 2  |
|              |                                                                                                                                                                                                                                                                                                                                                  | A1cao: awfw (4.05 –<br>4.055) ISW or rounding                                                                                                                 |    |
| (vi)         | New mean = $1.8 \times$ 'their $4.05(47)$ ' + $32 = 39.29(84)$ to $39.3$<br>New s = $1.8 \times 0.379$<br>= $0.682$                                                                                                                                                                                                                              | B1 FT<br>M1 for 1.8 × 0.379<br>A1 CAO awfw (0.68 –<br>0.6822)                                                                                                 | 3  |
|              |                                                                                                                                                                                                                                                                                                                                                  | TOTAL                                                                                                                                                         | 17 |

| Q7<br>(i) | $X \sim B(10, 0.8)$ (A) Either $P(X = 8) = {10 \choose 8} \times 0.8^8 \times 0.2^2 = 0.3020$ (awrt)<br>or $P(X = 8) = P(X \le 8) - P(X \le 7)$<br>= 0.6242 - 0.3222 = 0.3020<br>(B) Either $P(X \ge 8) = 1 - P(X \le 7)$<br>= 1 - 0.3222 = 0.6778<br>or $P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$<br>= 0.3020 + 0.2684 + 0.1074 = 0.6778 | M1 $0.8^8 \times 0.2^2$ or<br>0.00671<br>M1 $\binom{10}{8} \times p^8 q^2$ ; (p+q<br>=1)<br>Or 45 × $p^8 q^2$ ; (p+q=1)<br>A1 CAO (0.302) not 0.3<br>OR: M2 for 0.6242 –<br>0.3222 A1 CAO<br>M1 for 1 – 0.3222 (s.o.i.)<br>A1 CAO awfw 0.677 – 0.678<br>or<br>M1 for sum of 'their'<br>p(X=8) plus correct<br>expressions for p(x=9)<br>and p(X=10)<br>A1 CAO awfw 0.677 – 0.678 | 3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (ii)      | Let $X \sim B(18, p)$<br>Let $p$ = probability of delivery (within 24 hours) (for<br>population)<br>H <sub>0</sub> : $p = 0.8$<br>H <sub>1</sub> : $p < 0.8$<br>P( $X \le 12$ ) = 0.1329 > 5% ref: [pp =0.0816]                                                                                                                                | <ul> <li>B1 for definition of p</li> <li>B1 for H<sub>0</sub></li> <li>B1 for H<sub>1</sub></li> <li>M1 for probability</li> <li>0.1329</li> <li>M1dep strictly for comparison of 0.1329</li> <li>with 5% (seen or clearly implied)</li> </ul>                                                                                                                                   |   |
|           | So not enough evidence to reject H <sub>0</sub><br>Conclude that there is not enough evidence to indicate that less<br>than 80% of orders will be delivered within 24 hours<br>Note: use of critical region method scores<br>M1 for region {0,1,2,,9, 10}<br>M1dep for 12 does not lie in critical region then A1dep E1dep as per<br>scheme    | Aldep on both M's<br>Eldep on M1,M1,A1 for<br>conclusion in context                                                                                                                                                                                                                                                                                                              | 7 |

| (iii) | Let $X \sim B(18, 0.8)$                                                                                                                      |                                                                                                           |    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----|
| (111) | $H_1: p \neq 0.8$                                                                                                                            | B1 for $H_1$                                                                                              |    |
|       | LOWER TAIL                                                                                                                                   |                                                                                                           |    |
|       | $P(X \le 10) = 0.0163 < 2.5\%$                                                                                                               | B1 for 0.0163 or 0.0513                                                                                   |    |
|       | $P(X \le 11) = 0.0513 > 2.5\%$                                                                                                               | seen                                                                                                      |    |
|       |                                                                                                                                              | M1dep for either correct<br>comparison with <b>2.5%</b><br>( <b>not 5%</b> ) (seen or clearly<br>implied) |    |
|       |                                                                                                                                              | A1dep for correct lower<br>tail CR (must have zero)                                                       |    |
|       | UPPER TAIL<br>$P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9009 = 0.0991 > 2.5\%$<br>$P(X > 18) = 1 - P(X \le 17) = 1 - 0.9820 = 0.0180 \le 2.5\%$ | B1 for 0.0991 or 0.0180 seen                                                                              |    |
|       |                                                                                                                                              | M1dep for either correct                                                                                  |    |
|       | So critical region is $\{\underline{0}, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18\}$ o.e.                                                            | comparison with 2.5%                                                                                      |    |
|       | Condone $X \le 10$ and $X \ge 18$ or $X = 18$ but <b><u>not</u></b> $p(X \le 10)$ and                                                        | implied)                                                                                                  |    |
|       | $p(X \ge 18)$                                                                                                                                | • ´                                                                                                       |    |
|       | Correct CR without supportive working scores SC2 max after                                                                                   | A1dep for correct upper                                                                                   |    |
|       | the 1 <sup>st</sup> D1 (SC1 for each fully correct toil of CD)                                                                               | tall CK                                                                                                   | 7  |
|       | the 1 B1 (SC1 for each fully correct tall of CK)                                                                                             |                                                                                                           | ,  |
|       |                                                                                                                                              |                                                                                                           |    |
|       |                                                                                                                                              | TOTAL                                                                                                     | 19 |

# 4766 Statistics 1 (G241 Z1)

## **General Comments**

The level of difficulty of the paper appeared to be entirely appropriate for the candidates with a good range of marks obtained. It was very pleasing to note the performance of the more able candidates who scored highly on all questions. The presentation of work was good in the majority of cases.

Most candidates supported their numerical answers with appropriate explanations and working although some rounding errors were noted. The possible exception was in question 7 where the procedure for distinguishing between hypotheses was not always clear and where the construction of the critical region was occasionally sketchy. There was not much evidence of the efficient use of statistical calculations on a calculator with most candidates (even the most able) preferring to commit all the stages of the calculation to paper.

Weaker candidates often scored a significant proportion of their marks from the calculation of E(X) and Var (X) in question 3 and from the use of the cumulative frequency curve in question 6. Particularly amongst lower scoring candidates there was evidence of the use of point probabilities in question 7, possibly more so than in very recent papers.

## **Comments on Individual Questions**

Few candidates scored full marks on this question. Many found the mean as 0.75 but omitted the units. A small number of candidates divided by 1000 not 10000 whilst a few found  $\sum fx$  as 5110 (the value of  $\sum x$ ). Many struggled to find the standard deviation correctly with errors including the use of  $\sum fx2$  as 70000, 25010000 or 29250000, or division by 10000 instead of 9999 although this error was less frequent than in the summer. There were a lot of answers around 50.2 from obviously incorrect working.

Fully correct answers to part (ii) were rare. There were many answers involving 50 - 50 - 20 = 20

 $\frac{50}{10000} \times \frac{50}{10000} + \frac{20}{10000} \times \frac{20}{10000}$  (with replacement) instead of the correct

 $\frac{50}{10000} \times \frac{49}{9999} + \frac{20}{10000} \times \frac{19}{9999}$  (without replacement) whilst others wrote down the correct probability terms for two £10 prizes and for two £100 prizes but then failed to

perform the necessary addition in order to gain the full marks. A small number attempted to use P (A or B) = P (A) + P (B) – P (A and B) or similar with a value for P(A and B).

Part (i) was often answered well although some candidates gave  $(1/6)^6$  as the answer whilst others calculated 6! = 720 but failed to convert it into the correct probability. Part (ii) did not produce the same success with wrong answers including 6/20, 1/120, 20/120. Others found  ${}^6C_3$  as 20 but then failed to use it correctly sometimes even using it as part of a binomial expression. Those using  $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$  often forgot this could be arranged in 3! ways. 3 There were many excellent answers to parts (i) and (ii) even from the weaker candidates. The main error was to omit the subtraction of 1.352 in attempting to find the variance. Some of the weaker candidates squared the probabilities instead of r.

> Candidates found part (iii) much more taxing with a substantial number not obtaining 0.35; of those that did, few went on to reach 0.35<sup>2</sup>. Some candidates made very heavy weather of this often failing to realise that they could just add the probabilities of 2, 3 and 4 to give the 0.35, for each occasion. Those who did often left it as this answer and failed to square it. Some calculated 1-  $0.65^2$  instead of  $(1 - 0.65)^2$ . Some considered the individual outcomes but apart from one or two they did not have all nine terms. Generally they had 0.052 +0.052+0.252. The other common wrong answer was  $(0.6875)^2$ . Some candidates multiplied by 2 instead of squaring 0.35.

> Some tried to tackle the problem by complements, believing that  $p(X \ge 2 \text{ on both})$ occasions) =  $1 - p \{0, 0 \text{ or } 1, 0 \text{ or } 1, 1\}$ . Very few realised that if they went down this protracted route then what was required was 1 - p{ 0,0 or 0, 1 or 0,2 or 0,3 or 0,4 or 1,0 or 1,1 or 1,2 or 1,3 or 1,4 or 2,0 or 2,1or 3,0 or 3,1 or 4,0 or 4,1

- The stronger candidates regularly scored full marks on this question. Otherwise the 4 main errors in part (i) were the omission of  ${}^{50}C_1$  or a miscalculation of a correct binomial expression. Attempts at part (ii) were less successful with a number of answers given as 1 - P(X = 0) or as 1 - P(X = 1) instead of  $1 - P(X \le 1)$ . Most candidates gave the expectation correctly as 240  $\times$  P(X = 1) although some still insisted in rounding their answer to an integer. There was the very occasional use of 50 or 12000 instead of 240.
- 5 Although a number of candidates scored full marks, there were some very mixed responses to this question. In part (i) the stronger candidates gave clear and precise reasons as to why the events were not independent either from comparing  $P(R \mid L)$ with P(R), or by comparing P(R and L) with P(R)  $\times$  P(L). Others did not make the comparison clear, or compared P(R|L) with P(L), or having found that P(R and L)was not equal to  $P(R) \times P(L)$  said that the events were independent.

The Venn diagram in part (ii) was often poorly answered with probabilities of 0.36, 0.2. 0.25 and 0.19 for the four regions common instead of the correct 0.16, 0.2, 0.05 and 0.59. Another less common error was to replace the correct probability of 0.59 with 0.39 or even 0.41.

Part (iii) produced many correct answers alongside errors such as 0.2/0.25 and 0.25/0.36. Most candidates understood that the expression represented a conditional probability but some failed to give an explanation in context.

7

6 There were many very good answers to this question with most candidates scoring a good proportion of the marks. It was decided that it would be fairer to candidates to award one extra mark in part (i) and one fewer in (iii). Virtually all used a correct method in part (i) to find the median. A common mistake was to write 4.7 for 4.07 and IQR with the occasional misread from the diagram. There was less success with part (ii) with answers often involving the median or a multiple of the IQR other than 1.5. Not all candidates appreciated the fact one of the boundaries for the outliers (3.05 and 5.05) lay within the data range and the other outside it.

In part (iii) only a few candidates stated that the outlier could be a valid data item but other sensible explanations were seen. The frequency table was often completed correctly and most candidates attempted to use the interval midpoints to estimate the mean with varying degrees of accuracy. The estimate of the mean in degrees Fahrenheit was well answered but the addition of 32 was a common error in attempts to find the standard deviation. Some started all over again causing them to waste time and effort by changing all the mid points to Fahrenheit. Invariably, errors occurred along the way.

There were some superb answers to this question with explanations showing a clear understanding of the methods involved. Many candidates, however, struggled with the hypothesis testing and critical region with some scoring marks (if any) only for the initial probabilities.

In part (i) (A) the probability that exactly 8 orders were delivered was usually tackled sensibly either by use of tables or from a binomial expression. The main errors were the use of 1 - 0.6242 or the omission of  ${}^{10}C_8$ . Answers to part (B) were less successful with the omission of P(X = 8) in summing probabilities, 1 - P(X = 8) or  $1 - P(X \le 8)$  being common mistakes.

In part (ii) many candidates did not define p correctly or omitted it; there also remain errors in the notation used such as  $H_0 = 0.8$  or  $H_0$ : P(X) = 0.8. The use of point probabilities was the major error in the hypothesis test; other mistakes included the sole use of P (X \le 11) = 0.0513 in attempting to distinguish between the two hypotheses and the lack of a conclusion in context.

Attempts at finding the critical region in part (iii) were spoilt by a variety of errors. These included a frequent use of point probabilities, a comparison with 0.05 instead of 0.025, not stating any comparison, a lower critical region omitting 0 and an upper critical region including 17. Some candidates thought they were still testing 12 packets but using a two-tailed test.

Throughout parts (ii) and (iii) many candidates were not precise with their notation by not distinguishing clearly between <,  $\leq$  and =, for example it was fairly common to see P(X = 12) = 0.1329 instead of P (X $\leq$  12) = 0.1329 which was then clarified by a written explanation or a diagram. Candidates who tried to answer the hypothesis test using line diagrams or bar charts were often imprecise in their statistical arguments. It is important that they back up their diagrams with clear references to tail probabilities and make it 100% clear which values are in the critical region.

36