

Mathematics (MEI)

Advanced Subsidiary GCE 4751

Introduction to Advanced Mathematics (C1)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

SECTION A

-	ION			
1		$y = 3x + c \text{ or } y - y_1 = 3(x - x_1)$	M1	allow M1 for 3 clearly stated/ used as gradient of required line
		y - 5 = their $m(x - 4)$ o.e.	M1	or (4, 5) subst in their $y = mx + c$; allow M1 for $y - 5 = m(x - 4)$ o.e.
		y = 3x - 7 or simplified equiv.	A1	condone $y = 3x + c$ and $c = -7$ or B3 www
2		(i) $250a^6b^7$	2	B1 for two elements correct; condone multiplication signs left in SC1 for eg $250 + a^6 + b^7$
		(ii) 16 cao	1	C C
		(iii) 64	2	condone ±64
				M1 for $[\pm]4^3$ or for $\sqrt{4096}$ or for only -64
3		$ac = \sqrt{y} - 5$ o.e.	M1	M1 for each of 3 correct or ft correct steps s.o.i. leading to <i>y</i> as subject
		$ac+5=\sqrt{y}$ o.e.	M1	steps s.o.i. leading to y as subject
		$[y =](ac+5)^2$ o.e. isw	M1	or some/all steps may be combined;
				allow B3 for $[y =](ac+5)^2$ o.e. isw or B2 if one error
4	(i)	2 - 2x > 6x + 5	M1	or $1 - x > 3x + 2.5$
		-3 > 8x o.e. or ft	M1	for collecting terms of their inequality correctly on opposite sides eg -8x > 3
		x < -3/8 o.e. or ft isw	M1	allow B3 for correct inequality found after working with equation allow SC2 for $-3/8$ o.e. found with equation or wrong inequality
4	(ii)	$-4 < x < \frac{1}{2}$ o.e.	2	accept as two inequalities M1 for one 'end' correct or for -4 and $\frac{1}{2}$
5	(i)	7\sqrt{3}	2	M1 for $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{27} = 3\sqrt{3}$
L		1	I	۱

47	51
----	----

5 (ii)	$\frac{10+15\sqrt{2}}{7}$ www isw	3	B1 for 7 [B0 for 7 wrongly obtained]
	7		and B2 for $10+15\sqrt{2}$ or B1 for one term of numerator correct;
			if B0 , then M1 for attempt to multiply num and denom by $3 + \sqrt{2}$
6	5 + 2k soi	M1	allow M1 for expansion with $5x^3 + 2kx^3$ and no other x^3 terms or M1 for $(29 - 5) / 2$ soi
	<i>k</i> = 12	A1	
	attempt at f(3)	M1	must substitute 3 for x in cubic not product or long division as far as obtaining x^2
	27 + 36 + m = 59 o.e.	A1	+ $3x$ in quotient or from division $m - (-63) = 59$ o.e.
	m = -4 cao	A1	or for $27 + 3k + m = 59$ or ft their k
7	$1 + 2x + \frac{3}{2}x^2 + \frac{1}{2}x^3 + \frac{1}{16}x^4$ oe (must be simplified) isw	4	B3 for 4 terms correct, or B2 for 3 terms correct or for all correct but unsimplified (may be at an earlier stage, but factorial or ⁿ C _r notation must be expanded/worked out) or B1 for 1, 4, 6, 4, 1 soi or for $1++\frac{1}{16}x^4$ [must have at least one other term]
8	$5(x+2)^2 - 14$	4	B1 for $a = 5$, and B1 for $b = 2$ and B2 for $c = -14$ or M1 for $c = 6$ – their ab^2 or M1 for [their a](6/their a – their b^2) [no ft for $a = 1$]
9	mention of -5 as a square root of 25 or $(-5)^2 = 25$	M1	condone $-5^2 = 25$
	$-5 - 5 \neq 0$ o.e. or $x + 5 = 0$	M1	or, dep on first M1 being obtained, allow M1 for showing that 5 is the only soln of $x - 5 = 0$
action A 7			allow M2 for $x^2 - 25 = 0$ (x + 5)(x - 5) [= 0] so $x - 5 = 0$ or $x + 5 = 0$

Section A Total: 36

SECTION B

10	(i)	(2x-3)(x+1)	M2	M1 for factors with one sign error or giving two terms correct allow M1 for $2(x - 1.5)(x + 1)$ with no better factors seen
		x = 3/2 and -1 obtained	B1	or ft their factors
10	(ii)	graph of quadratic the correct way up and crossing both axes	B1	
		crossing x-axis only at $3/2$ and -1 or ft from their roots in (i), or their factors if roots not given	B1	for $x = 3/2$ condone 1 and 2 marked on axis and crossing roughly halfway between; intns must be shown labelled or worked out nearby
		crossing <i>y</i> -axis at -3	B 1	
10	(iii)	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula)	M1	may be in formula or $(x - 2.5)^2 = 6.25 - 10$ or $(x - 2.5)^2 + 3.75 = 0$ oe (condone one error)
		25 – 40 < 0 or –15 obtained	A1	or $\sqrt{-15}$ seen in formula or $(x - 2.5)^2 = -3.75$ oe or $x = 2.5 \pm \sqrt{-3.75}$ oe
10	(iv)	$2x^2 - x - 3 = x^2 - 5x + 10 $ o.e.	M1	attempt at eliminating <i>y</i> by subst or subtraction
		$x^2 + 4x - 13 = 0$	M1	or $(x + 2)^2 = 17$; for rearranging to form $ax^2 + bx + c$ [= 0] or to completing square form condone one error for each of 2 nd and 3 rd M1s
		use of quad. formula on resulting eqn (do not allow for original quadratics used)	M1	or $x+2=\pm\sqrt{17}$ o.e. 2nd and 3rd M1s may be earned for good attempt at completing square as far as roots obtained
		$-2\pm\sqrt{17}$ cao	A1	

4	7	5	1

11	(i)	grad AB = $\frac{1-3}{5-(-1)}$ [= -1/3]	M1	
		y-3 = their grad $(x - (-1))$ or y-1 = their grad $(x - 5)$	M1	or use of $y =$ their gradient $x + c$ with coords of A or B
				or M2 for $\frac{y-3}{1-3} = \frac{x-(-1)}{5-(-1)}$ o.e.
		y = -1/3x + 8/3 or $3y = -x + 8$ o.e isw	A1	o.e. eg $x + 3y - 8 = 0$ or $6y = 16 - 2x$ allow B3 for correct eqn www
11	(ii)	when $y = 0$, $x = 8$; when $x = 0$, y = 8/3 or ft their (i)	M1	allow $y = 8/3$ used without explanation if already seen in eqn in (i)
		$[Area =] \frac{1}{2} \times \frac{8}{3} \times 8 \text{ o.e. cao isw}$	M1	NB answer 32/3 given; allow 4 × 8/3 if first M1 earned; or M1 for $\int_{0}^{8} \left[\frac{1}{3}(8-x)\right] dx = \left[\frac{1}{3}\left(8x - \frac{1}{2}x^{2}\right)\right]_{0}^{8}$ and M1 dep for $\frac{1}{3}\left(64 - 32[-0]\right)$
11	(iii)	grad perp = $-1/\text{grad AB}$ stated, or used after their grad AB stated in this part	M1	or showing $3 \times -1/3 = -1$ if (i) is wrong, allow the first M1 here ft, provided the answer is correct ft
		midpoint [of AB] = $(2, 2)$	M1	must state 'midpoint' or show working
		y - 2 = their grad perp $(x - 2)$ or ft their midpoint	M1	for M3 this must be correct, starting from grad $AB = -1/3$, and also needs correct completion to given ans $y = 3x - 4$
		alt method working back from ans:	or	mark one method or the other, to benefit of candidate, not a mixture
		grad perp = $-1/\text{grad AB}$ and showing/stating same as given line	M1	eg stating $-1/3 \times 3 = -1$
		finding into of their y = -1/3x - 8/3 and $y = 3x - 4$ is (2, 2)	M1	or showing that (2, 2) is on $y = 3x - 4$, having found (2, 2) first
		showing midpt of AB is (2, 2)	M1	[for both methods: for M3 must be fully correct]

	Mark S	June 201	
(iv)	subst $x = 3$ into $y = 3x - 4$ and obtaining centre = $(3, 5)$	M1	or using $(-1-3)^2 + (3-b)^2 = (5-3)^2 + (1-b)^2$ and finding (3, 5)
	$r^2 = (5-3)^2 + (1-5)^2$ o.e.	M1	or $(-1-3)^2 + (3-5)^2$ or ft their centre using A or B
	$r = \sqrt{20}$ o.e. cao	A1	centre using A of B
	eqn is $(x-3)^2 + (y-5)^2 = 20$ or ft their r and y-coord of centre	B1	condone $(x - 3)^2 + (y - b)^2 = r^2$ o.e. or $(x - 3)^2 + (y - \text{their } 5)^2 = r^2$ o.e. (may be seen earlier)
(i)	trials of at calculating $f(x)$ for at least one factor of 30	M1	M0 for division or inspection used
	details of calculation for $f(2)$ or $f(-3)$ or $f(-5)$	A1	
	attempt at division by $(x - 2)$ as far as $x^3 - 2x^2$ in working	M1	or equiv for $(x + 3)$ or $(x + 5)$; or inspection with at least two terms of guadratic factor correct
	correctly obtaining $x^2 + 8x + 15$	A1	quadratic factor correct or B2 for another factor found by factor theorem
	factorising a correct quadratic factor	M1	for factors giving two terms of quadratic correct; M0 for formula without factors found
	(x-2)(x+3)(x+5)	A1	condone omission of first factor found; ignore '= 0' seen
			allow last four marks for $(x-2)(x+3)(x+5)$ obtained; for all 6 marks must see factor theorem use first
(ii)	sketch of cubic right way up, with two turning points	B1	0 if stops at <i>x</i> -axis
	values of intris on x axis shown, correct $(-5, -3, -3, -3, -3)$ or ft from	B1	on graph or nearby in this part
	their factors/ roots in (i)		mark intent for intersections with both axes
	y-axis intersection at -30	B1	or $x = 0$, $y = -30$ seen in this part if consistent with graph drawn
	(i)	(iv) subst $x = 3$ into $y = 3x - 4$ and obtaining centre = $(3, 5)$ $r^2 = (5 - 3)^2 + (1 - 5)^2$ o.e. $r = \sqrt{20}$ o.e. cao eqn is $(x - 3)^2 + (y - 5)^2 = 20$ or ft their <i>r</i> and <i>y</i> -coord of centre (i) trials of at calculating f(<i>x</i>) for at least one factor of 30 details of calculation for f(2) or f(-3) or f(-5) attempt at division by $(x - 2)$ as far as $x^3 - 2x^2$ in working correctly obtaining $x^2 + 8x + 15$ factorising a correct quadratic factor (x - 2)(x + 3)(x + 5) (ii) sketch of cubic right way up, with two turning points values of intns on <i>x</i> axis shown, correct (-5, -3, and 2) or ft from their factors/ roots in (i)	obtaining centre = $(3, 5)$ $r^2 = (5-3)^2 + (1-5)^2$ o.e.M1 $r = \sqrt{20}$ o.e. caoA1eqn is $(x-3)^2 + (y-5)^2 = 20$ or ftB1(i)trials of at calculating f(x) for at least one factor of 30M1details of calculation for f(2) or f(-3) or f(-5)A1attempt at division by $(x-2)$ as far as $x^3 - 2x^2$ in working correctly obtaining $x^2 + 8x + 15$ A1factorising a correct quadratic factorM1(ii)sketch of cubic right way up, with two turning pointsB1(ii)sketch of cubic right way up, with their factors/ roots in (i)B1

5

4751		Mark S	cheme June 20	
12	(iii)	(x - 1) substituted for x in either form of eqn for $y = f(x)$	M1	correct or ft their (i) or (ii) for factorised form; condone one error; allow for new roots stated as $-4,-2$ and 3 or ft
		$(x-1)^3$ expanded correctly (need not be simplified) or two of their factors multiplied correctly	M1 dep	or M1 for correct or correct ft multiplying out of all 3 brackets at once, condoning one error $[x^3 - 3x^2$ $+ 4x^2 + 2x^2 + 8x - 6x - 12x - 24]$
		correct completion to given answer [condone omission of 'y =']	M1	unless all 3 brackets already expanded, must show at least one further interim step allow SC1 for $(x + 1)$ subst <u>and</u> correct exp of $(x + 1)^3$ or two of their factors ft <u>or</u> , for those using given answer:
				M1 for roots stated or used as -4,-2 and 3 or ft A1 for showing all 3 roots satisfy given eqn B1 for comment re coefft of x^3 or product of roots to show that eqn of translated graph is not a multiple of RHS of given eqn

Section B Total: 36

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

