

Mathematics (MEI)

Advanced Subsidiary GCE Unit **4752:** Concepts for Advanced Mathematics

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

4752

SECTION A

1	11.4 o.e.	2	M1 for $12/3 + 12/4 + 12/5 + 12/6$ o.e.	M0 unless four terms summed
2	$\frac{1}{2}x^6 + 4x^{\frac{1}{2}} + c$	4	B1 for $\frac{1}{2}x^6$, M1 for $kx^{\frac{1}{2}}$, A1 for $k = 4$ or $\frac{4}{1}$, B1 for $+ c$ dependent on at least one power increased	allow $\frac{3}{6} x^6$ isw,
3	$\frac{1}{2} \times 1.5 \times (0.6 + 0.7 + 2(2.3 + 3.1 + 2.8 + 1.8))$ = 15.975 rounded to 2 s.f. or more	M2 A1	M1 if one error or M2 for sum of 5 unsimplified individual trapezia: 2.175, 4.05, 4.425, 3.45, 1.875	basic shape of formula must be correct. Must be 5 strips. M0 if pair of brackets omitted or $h = 7.5$ or 1. allow recovery of brackets omitted to obtain correct answer. M0 for other than 5 trapezia isw only if 15.975 clearly identified as cross-sectional area
4	(i) (3, 15)	B2	B1 for each coordinate	s.c. B0 for (3, 5)
4	(ii) (1.5, 5)	B2	B1 for each coordinate	s.c. B0 for (3, 5)
5	$ar = 6 \text{ and } ar^{4} = -48$ r = -2 tenth term = 1536 $\frac{-3(1-(-2)^{n})}{1-(-2)} \text{ o.e.}$ $(-2)^{n} - 1$	M1 M1 A1 M1	B2 for $r = -2$ www B3 for 1536 www allow M1 for $a = 6$ ÷their r and substitution in GP formula with their a and r c.a.o.	ignore incorrect lettering such as d =-2 condone the omission of the brackets round "-2" in the numerator and / or the denominator

4752

Mark Scheme

January 2011

6	a+2d = 24 and $a + 9d = 3$	M1		
	d = -3; a = 30	AI A1	if M0, B2 for either, B3 for both	do not award B2 or B3 if values clearly obtained fortuitously
	$S_{50} - S_{20}$	M1		5
			ft their <i>a</i> and <i>d</i> ;	$S_{50} = -2175; S_{20} = 30$
			30	$u_{21} = 30 - 20 \times 3 = -30$
	-2205 cao	A1	M1 for $S_{30} = 2 (u_{21} + u_{50})$ o.e.	$u_{50} = 30 - 49 \times 3 = -117$
	17		B2 for -2205 www	
7	(i) 17 $\log_{10} x$ or $\log_{10} x^{1/2}$	B2	M1 for $5\log_{10} x$ or $12 \log_{10} x$ or $\log_{10} x^{12}$	condone omission of base
			as part of the first step	
7	(ii) - <i>b</i>	B2	M1 for $\log_a 1 = 0$ or $\log_a a = 1$ soi	allow 0 - <i>b</i>
8	substitution of $\sin^2 \theta = 1 - \cos^2 \theta$	M1	soi	
	$-5\cos^2\theta = \cos\theta$	A1	or better	
	$\theta = 90$ and 270,	A1		if the 4 correct values are presented, ignore any extra
	102	A1	accept 101.5() and 258.(46)	values which are outside the required range, but apply
	258	A1	rounded to 3 or more sf;	a penalty of minus 1 for extra values in the range
			if M0 , allow B1 for both of 90 and 270	
	101 and 259	SC	and B1 for 102 and B1 for 258 (to 3 or	if given in radians deduct 1 mark from total awarded
		1	more sf)	(1.57, 1.77, 4.51, 4.71)

4752			Mark Scheme	January 2011
9	area sector = $\frac{1}{2} \times r^2 \times \frac{\pi}{6} \left[= \frac{\pi r^2}{12} \right]$	M1	soi	
	area triangle = $\frac{1}{2} \times a^2 \times \sin \frac{\pi}{6} \left[= \frac{a^2}{4} \right]$	M1	soi	allow sin30
	$\frac{1}{2a^2} \times \frac{1}{2} = \frac{1}{2} \times r^2 \times \frac{\pi}{6} \times \frac{1}{2}$	M1	soi	no follow through marks available
	$\frac{a^2}{4} = \frac{\pi r^2}{24}$ o.e. and completion to given answer	A1		at least one correct intermediate step required, and no wrong working to obtain given answer

Section A Total: 36

4752

SECTION B

10	(i) eqn of AB is $y = 3x + 1$ o.e. their " $3x + 1$ " = $4x^2$ (4x + 1) (x - 1) = 0 o.e. so $x = -1/4$	M1 M1 M1	or equiv in y: $y = 4\left(\frac{y-1}{3}\right)^2$ or rearranging and deriving roots $y = 4$ or $\frac{1}{4}$ condone verification by showing lhs = rhs o.e.	SC3 for verifying that A, B and C are collinear and that C also lies on the curve SC2 for verifying that A, B and C are collinear by showing that gradient of AB = AC (for example) or showing C lies on AB solely verifying that C lies on the curve scores 0
	at C, $x = -1/4$, $y = 4 \times (-1/4)^2$ or $3 \times (-1/4) + 1[=1/4$ as required]	Al	or $y = \frac{1}{4}$ implies $x = \pm \frac{1}{4}$ so at C $x = -\frac{1}{4}$	
10	(ii) $y' = 8x$ at A $y' = 8$ eqn of tgt at A y - 4 = their"8" $(x - 1)y = 8x - 4at C y' = 8 \times -1/4 [=-2]y - \frac{1}{4} = -2(x - (-\frac{1}{4})) or otherunsimplified equivalent to obtaingiven result.allow correct verification that (-\frac{1}{4}, \frac{1}{4})lies on given line$	M1 A1 M1 A1 M1 A1	ft their gradient NB if m = -2 obtained from given answer or only showing that $(-\frac{1}{4}, \frac{1}{4})$ lies on given line $y = -2x - \frac{1}{4}$ then 0 marks.	gradient must follow from evaluation of $\frac{dy}{dx}$ condone unsimplified versions of $y = 8x - 4$ dependent on award of first M1 SC2 if equation of tangent and curve solved simultaneously to correctly show repeated root
10	(iii) their " $8x - 4$ " = $-2x - \frac{1}{4}$ y = -1 www	M1 A1	or $\frac{y+4}{8} = \frac{y+\frac{1}{4}}{-2}$	o.e. $[x = 3/8]$

4752			Mark Scheme	January 2011	
11	(i) $\frac{x^4}{4} - x^3 - \frac{x^2}{2} + 3x$	M2	M1 if at least two terms correct	ignore + c	
	their integral at 3 – their integral at 1 [= $-2.25 - 1.75$]	M1	dependent on integration attempted	M0 for evaluation of $x^3 - 3x^2 - x + 3$ or of differentiated version	
	= -4 isw	A1			
	represents area between curve and x axis between $x = 1$ and 3	B1		B0 for area <i>under</i> or above curve between $x = 1$ and 3	
	negative since below <i>x</i> -axis	B1			
11	(ii) $y' = 3x^2 - 6x - 1$	M1			
	their $y' = 0$ sol	MII	dependent on differentiation attempted		
	$x = \frac{2a}{2a}$ with $a = 3, b = -$	M1	or $3(x-1)^2 - 4 = 0$ or better	6 ± √48	
	6 and $c = -1$ isw $x = \frac{6 \pm \sqrt{48}}{6}$ or better as final answer	A1	eg A1 for $1 \pm \frac{2}{3}\sqrt{3}$	no follow through; NB 6 or better stated without working implies use of correct method	
	$\frac{6-\sqrt{48}}{5} < x < \frac{6+\sqrt{48}}{5}$ or ft their	B1	allow \leq instead of $<$	A0 for incorrect simplification, eg $1 \pm \sqrt{48}$	
	6 6 final answer			allow B1 if <i>both</i> inequalities are stated separately and	
				It's clear that both apply allow B1 if the terms and the signs are in reverse order	
12	(i) 50% of 25 000 is 12 500 and the population [in 2005] is 12 000 [so consistent]	B1	or 12 000 is 48% of 25 000 so less than 50%[so consistent]	anow D1 if the terms and the signs are in reverse order	
12	(ii) $\log_{10} P = \log_{10} a - kt$ or	B2	condone omission of base; M1 for log $D = \log_{10} \pi + \log_{10} 10^{-kt}$ or better		
	$\log_{10} \overline{a} = -kt \text{ o.e. www}$		$\begin{array}{c} \log_{10} P - \log_{10} a + \log_{10} 10 & \text{or better} \\ \text{www} \end{array}$		
		1			

4752			Mark Scheme	January 2011
12	(iii) 4.27, 4.21, 4.13, 4.08 plots ruled line of best fit drawn	B1 B1 B1	accept 4.273, 4.2108, 4.130, 4.079 rounded to 2 or more dp 1 mm tolerance ft their values if at least 4 correct values are correctly plotted	f.t. if at least two calculated values correct must have at least one point on or above and at least one point on or below the line and must cover $0 \le t \le 25$
12	(iv) $a = 25000$ to 25400 $0.01 \le k \le 0.014$ $P = a \times 10^{-kt}$ or $P = 10^{\log a - kt}$ with values in acceptable ranges	B1 B2 B1	allow $10^{4.4}$ M1 for $-k = \Delta x$ using values from table or graph; condone $+k$ B0 if left in logarithmic form	M1 for a correct first step in solving a pair of valid equations in either form A1 for k A1 for a A1 for $P = a \times 10^{-kt}$
12	(v) $P = a \times 10^{-35k}$ 8600 to 9000 comparing their value with 9375 o.e. and reaching the correct conclusion for their value	M1 A1 A1	T heir <i>a</i> and <i>k</i> f.t.	allow $\log P = \log a - 35k$

Section B Total: 36

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

