

GCE

Mathematics (MEI)

Advanced Subsidiary GCE

Unit 4752: Concepts for Advanced Mathematics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

SECTION A

1	$\frac{1}{2}x^4 + 3x$	M1	accept unsimplified	ignore + c
	F[5] – F[2]	M1	at least one term correctly integrated,	condone omission of brackets
	[=327.5 - 14]		may be implied by A1	
	=313.5 o.e.	A1		313.5 unsupported scores 0
2	$0.05, 2000, 1.25 \times 10^{-6}$ or	B2	B1 for two correct	
	$\frac{1}{20}$, 2000, $\frac{1}{800000}$ o.e.			
	divergent	B 1	allow "alternate terms tend to zero and to infinity" o.e.	do <i>not</i> allow "oscillating", "getting bigger and smaller", "getting further apart"
3(i)	$m = \frac{\sqrt{1+2\times 4.1} - \sqrt{1+2\times 4}}{4.1-4} \text{ s.o.i}$	M1		no marks for use of Chain Rule or any other attempt to differentiate
	grad = $\frac{\sqrt{9.2} - \sqrt{9}}{4.1 - 4}$ s.o.i	M1		SC2 for 0.33 appearing only embedded in equation of chord
	0.3315 cao	A1		
3(ii)	selection of value in (4, 4.1) and 4 or of two values in [3.9, 4.1] centred on 4	M1		allow selection of 4 and value in (3.9, 4)
	answer closer to 1/3 than 0.3315()	A1		
4	$6 = ab$ and $3.6 = ab^2$	M1	log6 = loga + logb and log3.6 = loga + logb2	
	$a = 10, \ b = 0.6$ c.a.o.	A2	A1 each; if M0 then B3 for both, B1 for one	

Mark Scheme M1 $\left[\frac{dy}{dx}\right] = 32x^3 \text{ c.a.o.}$ substitution

<i>x</i> c . <i>a</i> .o.			
n of $x = \frac{1}{2}$ in their $\frac{dy}{dx}$	M1	[=4]	must see kx^3
al = $\frac{-1}{their4}$	M1		their 4 must be obtained by calculus
$y_2, y = 4 \frac{1}{2} \text{ o.e.}$	B1		
$-\frac{1}{4}(x-\frac{1}{2})$ i.s.w	A1	$y = -\frac{1}{4}x + 4\frac{5}{8}$ o.e.	
-2			$x^{\frac{1}{6}}$ is a mistake, not a misread
2x+c o.e.	M2	M1 for $kx^{\frac{3}{2}}$ and M1 for $-2x + c$	" $y =$ " need not be stated at this point, but must be seen
\mathbf{r}	A 1		

$dx y = kx^{\frac{3}{2}} - 2x + c \text{ o.e.} y = 4x^{\frac{3}{2}} - 2x + c \text{ o.e.}$	M2 A1	M1 for $kx^{\frac{3}{2}}$ and M1 for $-2x + c$	" $y =$ " need not be stated at this point, but must be seen at some point for full marks
correct substitution of $x = 9$ and $y = 4$ in their equation of curve $y = 4x^{\frac{3}{2}} - 2x - 86$	M1 _{dep} A1	dependent on at least M1 already awarded allow A1 for $c = -86$ i.s.w. if simplified equation for y seen earlier	must see "+ c "

5

6

7	$\frac{\sin \theta}{\cos \theta} = 2\sin \theta$ $2\cos \theta - 1 = 0 \text{ and } \sin \theta = 0$ $[\theta =] 0, 180, 360,$ $[\theta =] 60, 300$ if 4 marks awarded, lose 1 mark for extra values in the range, ignore extra values outside the range	M1 A1 B1 B1	<i>may</i> be implied by $2\cos\theta - 1 = 0$ or better	or, if to advantage of candidate B4 for all 5 correct B3 for 4 correct B2 for 3 correct B1 for 2 correct if extra value(s) in range, deduct one mark from total do not award if values embedded in trial and improvement approach
8	$\log p = \log s + \log t^{n}$ $\log p = \log s + n \log t$ $[n =] \frac{\log p - \log s}{\log t} \text{ or } \frac{\log\left(\frac{p}{s}\right)}{\log t}$ [base not required]	M1 M1 A1	or $\frac{p}{s} = t^n$ $n \log t = \log\left(\frac{p}{s}\right)$ as final answer (i.e. penalise further incorrect simplification)	or A2 for $[n=]\log_t\left(\frac{p}{s}\right)$ [base <i>t</i> needed] following first M1
9	$log16^{\frac{1}{2}}$ or [-] $log5^{2}$ s.o.i. $log(4 \times 75)$ or $log\frac{75}{25}$ s.o.i. x = 12 www	M1 M1 A1	$x = \frac{4 \times 75}{25}$ implies M1M1	if $a = 10$ assumed, $x = 12$ c.a.o. scores B3 www no follow through
10	$t_1 = -\sin\theta \\ t_2 = \sin\theta$	B1 B1	WWW WWW	e.g. $\sin(\theta + 360) = \sin \theta + \sin 360 = \sin \theta$ B0

Section A Total: 36

SECTION B

11(i)	$200 - 2\pi r^2 = 2\pi rh$	M1	$100 = \pi r^2 + \pi r h$	sc3 for complete argument working backwards:
	$h = \frac{200 - 2\pi r^2}{2\pi r}$ o.e.	M1	$100r = \pi r^3 + \pi r^2 h$	$V = 100r - \pi r^{3}$ $\pi r^{2}h = 100r - \pi r^{3}$
	substitution of correct <i>h</i> into $V = \pi r^2 h$	M1	$100r = \pi r^3 + V$	$\pi rh = 100 - \pi r^{2}$ $100 = \pi rh + \pi r^{2}$ $200 = 4 - 2 - rh + 2 - r^{2}$
	$V = 100r - \pi r^3$ convincingly obtained	A1	$V = 100r - \pi r^3$	$200 = A = 2\pi rh + 2\pi r^2$
				sc0 if argument is incomplete
			or V	
			M1 for $h = \frac{V}{\pi r^2}$	
			M1 for $200 = 2\pi r^2 + 2\pi r \times \frac{V}{\pi r^2}$	
			M1 for $200 = 2\pi r^2 + 2\frac{V}{r}$ A1 for $V = 100r - \pi r^3$ convincingly	
			A1 for $V = 100r - \pi r^3$ convincingly obtained	
11(ii)	$\frac{dV}{dr} = 100 - 3\pi r^2$	B2	B1 for each term	allow 9.42() r^2 or better if decimalised
	$\frac{d^2 V}{dr^2} = -6\pi r$	B1		-18.8() r or better if decimalised

11(iii)	their $\frac{dV}{dr} = 0$ s.o.i.	M1	must contain <i>r</i> as the only variable	
	r = 3.26 c.a.o.	A2	A1 for $r = (\pm)\sqrt{\frac{100}{3\pi}}$; may be implied	
			by 3.25	
	V = 217 c.a.o.	A1	deduct 1 mark only in this part if answers not given to 3 sf,	there must be evidence of use of calculus

Mark Scheme

12(i)	390	B2	M1 for 500 – 11 × 10	
(A)				
12(i) (B)	$S_{24} = \frac{24}{2} (2 \times 500 + (24 - 1) \times -10)$ o.e. i.s.w.	B2	nothing simpler than $12(1000 + 23 \times -10)$ or $\frac{24}{2}(1000 - 230)$	condone omission of final bracket or "(23)-10" if recovered in later work
			or $12(2 \times 500 - 230)$ if B2 not awarded, then M1 for use of a.p. formula for S ₂₄ with n = 24, $a = 500$ and $d = -10$	if they write the sum out, all the terms must be listed for 2 marks
	or $S_{24} = \frac{24}{2} (500 + 270)$ o.e. i.s.w. [=9240] (answer given)		or M1 for $l = 270$ s.o.i.	$12 \times (1000 - 230)$ or 12×770 on its own do not score
12(ii) (A)	368.33() or 368.34	B2	M1 for 460×0.98^{11}	
12(ii) (B)	$J_{20} = 310$ $M_{20} = 313.36(), 313.4, 313.3,$ 313.37 or 313 $J_{19} = 320$	B3	B3 for all 4 values correct orB2 for 3 values correct orB1 for 2 values correct	values which are clearly wrongly attributed do not score
	$M_{19} = 319.76(), 319.8 \text{ or } 319.7$			
12(ii) (C)	8837 to 8837.06	B2	M1 for $S_{24} = \frac{460(1-0.98^{24})}{1-0.98}$ o.e.	
12(ii) (D)	$\frac{a(1-0.98^{24})}{(1-0.98)} = 9240 \text{ o.e.}$ 480.97 to 480.98	M1 A1	f.t. their power of 24 from (ii)C	

13(i)	arc AC = 2.1×1.8	M1	$\frac{103}{360} \times 2\pi \times 2.1$	103° or better
	= 3.78 c.a.o.	A1	360	3.78 must be seen but may be embedded in area formula
	area = their 3.78 × 5.5 = 20.79 or 20.8 i.s.w.	M1 ^{dep*} A1	dependent on first M1	Torinula
13(ii)	BD = $2.1 \cos (\pi - 1.8)$ or $2.1 \cos 1.3(4159)$ or $2.1 \sin 0.2(292)$ r.o.t to 1 d.p. or	M2	M1 for $\cos(\pi - 1.8) = \frac{BD}{2.1}$ o.e.	M2 for BD = $2.1 \cos 76.8675^{\circ}$ or 2.1sin13.1324rounded to 2 or more sf
	more			or M2 for CD = 2.045 r.o.t. to 3 s.f. or better and BD = $\sqrt{(2.1^2 - 2.045^2)}$
	= 0.48	A1	allow any answer which rounds to 0.48	
13(iii)	sector area = 3.969	M2	M1 for $\frac{1}{2} \times 2.1^2 \times 1.8$	or equivalent with degrees for first two Ms N.B. $5.5 \times 3.969 = 21.8295$ so allow M2 for 21.8295
	triangle area = 0.487 to 0.491	M2	M1 for $\frac{1}{2} \times 2.1 \times \text{their } 0.48 \times \sin(\pi - 1.8)$	may be sin 1.8 instead of sin $(\pi - 1.8)$
			$72 \times 2.1 \times \text{then } 0.48 \times \text{sm}(n - 1.8)$ or $1/_2 \times \text{their } 0.48 \times 2.045$ r.o.t. to 3 s.f. or better	N.B. $5.5 \times \text{area} = 2.6785$ to 2.7005 so allow M2 for a value in this range
	24.5	A1	allow any answer which rounds to 24.5	

Section B Total: 36

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

