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Section A (36 marks)

1 Differentiate
3
√

1 + 6x2. [4]

2 The functions f(x) and g(x) are defined for all real numbers x by

f(x) = x2, g(x) = x − 2.

(i) Find the composite functions fg(x) and gf(x). [3]

(ii) Sketch the curves y = f(x), y = fg(x) and y = gf(x), indicating clearly which is which. [2]

3 The profit £P made by a company in its nth year is modelled by the exponential function

P = Aebn.

In the first year (when n = 1), the profit was £10 000. In the second year, the profit was £16 000.

(i) Show that eb = 1.6, and find b and A. [6]

(ii) What does this model predict the profit to be in the 20th year? [2]

4 When the gas in a balloon is kept at a constant temperature, the pressure P in atmospheres and the
volume V m3 are related by the equation

P = k
V

,

where k is a constant. [This is known as Boyle’s Law.]

When the volume is 100 m3, the pressure is 5 atmospheres, and the volume is increasing at a rate of
10 m3 per second.

(i) Show that k = 500. [1]

(ii) Find
dP
dV

in terms of V . [2]

(iii) Find the rate at which the pressure is decreasing when V = 100. [4]

5 (i) Verify the following statement:

‘2p − 1 is a prime number for all prime numbers p less than 11’. [2]
(ii) Calculate 23 × 89, and hence disprove this statement:

‘2p − 1 is a prime number for all prime numbers p’. [2]
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6 Fig. 6 shows the curve e2y = x2 + y.

O
x

y

P

Fig. 6

(i) Show that
dy
dx

= 2x

2e2y − 1
. [4]

(ii) Hence find to 3 significant figures the coordinates of the point P, shown in Fig. 6, where the curve
has infinite gradient. [4]

Section B (36 marks)

7 A curve is defined by the equation y = 2x ln(1 + x).
(i) Find

dy
dx

and hence verify that the origin is a stationary point of the curve. [4]

(ii) Find
d2y

dx2
, and use this to verify that the origin is a minimum point. [5]

(iii) Using the substitution u = 1 + x, show that � x2

1 + x
dx = � (u − 2 + 1

u
) du.

Hence evaluate � 1

0

x2

1 + x
dx, giving your answer in an exact form. [6]

(iv) Using integration by parts and your answer to part (iii), evaluate � 1

0
2x ln(1 + x)dx. [4]
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8 Fig. 8 shows the curve y = f(x), where f(x) = 1 + sin 2x for −1
4
π ≤ x ≤ 1

4
π.
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Fig. 8

(i) State a sequence of two transformations that would map part of the curve y = sin x onto the curve
y = f(x). [4]

(ii) Find the area of the region enclosed by the curve y = f(x), the x-axis and the line x = 1
4
π. [4]

(iii) Find the gradient of the curve y = f(x) at the point (0, 1). Hence write down the gradient of the
curve y = f −1(x) at the point (1, 0). [4]

(iv) State the domain of f −1(x). Add a sketch of y = f −1(x) to a copy of Fig. 8. [3]

(v) Find an expression for f −1(x). [2]
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4753 (C3) Methods for Advanced Mathematics 

Section A 
 
 
1 2 1/3(1 6 )y x= +  

⇒ 2 2/ 31 (1 6 ) .12
3

dy x x
dx

−= +  

       2 2/ 34 (1 6 )x x −= +  

 
M1 

B1 
A1 
A1 
[4] 

 
chain rule used 

2/31
3

u−   

×12x 
cao (must resolve 1/3 × 12) Mark final answer 

 
2 (i) fg(x) = f(x – 2)  
                = (x – 2)2 
        gf(x) = g(x2) = x2 – 2. 
    

 
M1 
A1 
A1 
[3] 

 
forming a composite function 
mark final answer 
If fg and gf the wrong way round, M1A0A0 
 

  
  (ii)    
 
 
 
 
 
 
 

 
B1ft 
 
B1ft 
 
 
 
[2] 
 

 
fg – must have (2, 0)labelled (or inferable from scale). 
Condone no y-intercept, unless wrong 
 
gf – must have (0, –2) labelled (or inferable from scale) 
Condone no x-intercepts, unless  wrong 
 
Allow ft only if fg and gf are correct but wrong way 
round. 

 
3 (i)  When n = 1, 10 000 = A eb 
 when n = 2, 16 000 = A e2b 

⇒ 
216000

10000

b
b

b

Ae e
Ae

= =  

⇒ eb = 1.6 
⇒ b = ln 1.6 = 0.470 
 A = 10000/1.6 = 6250. 

 
B1 
B1 
M1 
 
E1 
B1 
B1 
[6] 

 
soi 
soi 
eliminating A (do not allow verification) 
 
SCB2 if initial ‘B’s are missing, and ratio of years = 1.6 
= eb 
ln 1.6 or 0.47 or better (mark final answer) 
cao – allow recovery from inexact b’s 

 
  (ii) When n = 20, P = 6250×e0.470×20 
                           = £75,550,000 
         

 
M1 
A1 
[2] 

 
substituting n = 20 into their equation with their A and b  
Allow answers from £75 000 000 to £76 000 000. 

 
4 (i) 5 = k/100 ⇒ k = 500*     

 
E1 
[1] 

 
NB answer given 
  

 
  (ii) 2

2

500500dP V
dV V

−= − = −  
 
M1 
A1 
[2] 

 
(–1)V–2 
o.e. – allow –k/V2 

 
   (iii) .dP dP dV

dt dV dt
=  

 
When V = 100, dP/dV = –500/10000 = 
–0.05 
                dV/dt = 10 
⇒ dP/dt = –0.05 × 10 = –0.5 
So P is decreasing at 0.5 Atm/s 

 
M1 
 
 
B1ft 
B1 
A1 
[4] 
 

 
chain rule (any correct version) 
 
 
(soi) 
(soi) 
–0.5 cao 

fg(x) 

2 

-2 
gf(x) 
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   5(i)  p = 2, 2p – 1 = 3, prime 
 p = 3, 2p – 1 = 7, prime 
 p = 5, 2p – 1 = 31, prime 
 p = 7, 2p – 1 = 127, prime 
  
 

 
M1 
E1 
[2] 
 

 
Testing at least one prime 
testing all 4 primes (correctly) 
Must comment on answers being prime (allow ticks) 
Testing p = 1 is E0 

 
   (ii) 23×89 = 2047 = 211 – 1 
 11 is prime, 2047 is not 
 So statement is false. 
 

 
M1 
E1 
[2] 

 
211 – 1 
must state or imply that 11 is prime (p = 11 is sufficient) 

 
 6 (i) e2y =  x2 + y  
⇒ 22 2y dy dye x

dx dx
= +  

⇒ 2(2 1) 2y dye x
dx

− =  

⇒ 
2

2
2 1y

dy x
dx e

=
−

* 

 

 
M1 
 
A1 
 
M1 
 
E1 
[4] 

 
Implicit differentiation – allow one slip (but with dy/dx both 
sides) 
 
 
collecting terms 

 
   (ii) Gradient is infinite when 2e2y – 1 = 
0 
⇒ e2y = ½  
⇒ 2y = ln ½  
⇒ y = ½ ln ½ = –0.347 (3 s.f.) 
 x2 = e2y – y = ½ – (–0.347) 
          = 0.8465 
⇒ x = 0.920 
 

 
M1 
 
 
A1 
M1 
 
A1 
[4] 
 

 
 
 
 
must be to 3 s.f. 
substituting their y and solving for x 
 
cao – must be to 3 s.f., but penalise accuracy once only. 
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Section B 
 
 
7(i) y = 2x ln(1 + x) 
⇒ 2 2ln(1 )

1
dy x x
dx x

= + +
+

 

When x = 0, dy/dx = 0 + 2 ln 1 = 0 
⇒   origin is a stationary point. 
 

 
M1 
B1 
A1 
 
E1 
[4] 
 

 
product rule 
d/dx(ln(1+x)) = 1/(1+x) soi 
 
 
www (i.e. from correct derivative) 

 
 (ii)    

2

2 2

(1 ).2 2 .1 2
(1 ) 1

d y x x
dx x x

+ −
= +

+ +
 

                 
2

2 2
(1 ) 1x x

= +
+ +

 

When x = 0, d2y/dx2 = 2 + 2 = 4 > 0 
⇒ (0, 0) is a min point 

 
M1 
A1ft 
 
A1 
 
M1 
E1 
 [5] 
 

 
Quotient or product rule on their 2x/(1 + x) 
correctly applied to their 2x/(1+x) 

o.e., e.g. 
2

4 2
(1 )

x
x

+
+

 cao 

substituting x = 0 into their d2y/dx2 
www – dep previous A1 
 

 
(iii) Let u = 1 + x ⇒ du = dx 

⇒ 
2 2( 1)

1
x udx du

x u
−

=
+∫ ∫   

                =
2( 2 1)u u du

u
− +

∫  

     = 1( 2 )u du
u

− +∫  * 

⇒ 
21 2

0 1

1( 2 )
1

x dx u du
x u

= − +
+∫ ∫  

                        
2

2

1

1 2 ln
2

u u u⎡ ⎤= − +⎢ ⎥⎣ ⎦
 

 
                        = 2 – 4 + ln 2 – ( ½ – 2 + ln 1) 
                         = ln 2 – ½   
                               
 

 
 
 
M1 
 
 
 
 
E1 
 
B1 
 
 
B1 
 

M1 
A1 
[6] 
 

 
 

2( 1)−u
u

 

 
 
 
 
www (but condone du omitted except in final answer) 
 
changing limits (or substituting back for x and using 0 and 1) 
 

21 2 ln
2

u u u⎡ ⎤− +⎢ ⎥⎣ ⎦
 

substituting limits (consistent with u or x) 
cao 

 
(iv) 1

0
2 ln(1 )A x x dx= +∫  

Parts: u = ln(1 + x), du/dx = 1/(1 + x) 
         dv/dx = 2x ⇒ v = x2 

             
2112

0 0
ln(1 )

1
xx x dx

x
⎡ ⎤= + −⎣ ⎦ +∫  

              
              = ln 2 – ln 2 + ½  = ½  
 

 
 
 
M1 
 
 
A1 
M1 
 
A1 
 [4] 
 

 
 
 
soi 
 
 

substituting their ln 2 – ½  for 
21

0 1+∫
x dx

x
 

cao 
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8 (i) Stretch in x-direction 
 s.f. ½  
 translation  in y-direction 
  
           1 unit up 
 

 
M1 
A1 
M1 
 
A1 
[4] 
 

 
(in either order) – allow ‘contraction’ 
dep ‘stretch’ 
allow ‘move’, ‘shift’, etc – direction can be inferred from 

0
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

or 0
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 dep ‘translation’. 0
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 alone is M1 A0 

 
 
  (ii)    / 4

/ 4
(1 sin 2 )A x dx

π

π−
= +∫  

            
/ 4

/ 4

1 cos 2
2

x x
π

π−

⎡ ⎤= −⎢ ⎥⎣ ⎦
 

           = π/4 – ½ cos π/2 + π/4 + ½ cos (–π/2) 
               
  = π/2  
     
 

 
 
M1 
 
B1 
 
M1 
 
A1 
[4] 
 

 
 
correct integral and limits. Condone dx missing; limits may 
be implied from subsequent working. 
 
 
substituting their limits (if zero lower limit used, must show 
evidence of substitution) 
or 1.57 or better – cao (www) 

 
  (iii) y = 1 + sin 2x 
⇒ dy/dx = 2cos 2x 
 When x = 0, dy/dx = 2 
 So gradient at (0, 1) on f(x) is 2 
⇒  gradient at (1, 0) on f–1(x) = ½  
 

 
M1 
A1 
 
A1ft 
B1ft 
 [4] 
 

 
differentiating – allow 1 error (but not x + 2cos 2x) 
 
 
 
If 1, then must show evidence of using reciprocal, e.g. 1/1 

 
  (iv) Domain is 0 ≤ x ≤ 2. 
 
 
 
 
 
 
 
 
 
 
 

 
B1 
 
 
 
 
M1 
A1 
 
 
 
[3] 
 

 
Allow 0 to 2, but not 0 < x < 2 or y instead of x 
 
 
 
 
clear attempt to reflect in y = x 
correct domain indicated (0 to 2), and reasonable shape 
 

 
(v) y = 1 + sin 2x  x ↔y 
 x = 1 + sin 2y 
⇒ sin 2y = x – 1 
⇒ 2y = arcsin(x – 1) 
⇒ y = ½ arcsin(x – 1) 

 
 
M1 
 
 
A1 
[2] 
 

 
 
or sin 2x = y – 1 
 
 
cao 
 

 

y 

O –π/4 
x 

π/4 

2 

2 
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