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Section A (36 marks)

1 Given that y = 3
√

1 + x2, find
dy

dx
. [4]

2 Solve the inequality |2x + 1| ≥ 4. [4]

3 The area of a circular stain is growing at a rate of 1 mm2 per second. Find the rate of increase of its
radius at an instant when its radius is 2 mm. [5]

4 Use the triangle in Fig. 4 to prove that sin2
θ + cos2

θ = 1. For what values of θ is this proof valid?
[3]

A B

C

!

Fig.�4

5 (i) On a single set of axes, sketch the curves y = ex − 1 and y = 2e−x. [3]

(ii) Find the exact coordinates of the point of intersection of these curves. [5]

6 A curve is defined by the equation (x + y)2 = 4x. The point (1, 1) lies on this curve.

By differentiating implicitly, show that
dy

dx
= 2

x + y
− 1.

Hence verify that the curve has a stationary point at (1, 1). [4]
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7 Fig. 7 shows the curve y = f(x), where f(x) = 1 + 2 arctan x, x ∈ $. The scales on the x- and y-axes are
the same.

1

x

y

Fig.�7

O

(i) Find the range of f, giving your answer in terms of π. [3]

(ii) Find f −1(x), and add a sketch of the curve y = f −1(x) to the copy of Fig. 7. [5]
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Section B (36 Marks)

8 (i) Use the substitution u = 1 + x to show that

% 1

0

x3

1 + x
dx = % b

a

(u2 − 3u + 3 − 1

u
) du,

where a and b are to be found.

Hence evaluate % 1

0

x3

1 + x
dx, giving your answer in exact form. [7]

Fig. 8 shows the curve y = x2 ln(1 + x).

x

y

Fig.�8

O

(ii) Find
dy

dx
.

Verify that the origin is a stationary point of the curve. [5]

(iii) Using integration by parts, and the result of part (i), find the exact area enclosed by the curve

y = x2 ln(1 + x), the x-axis and the line x = 1. [6]
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9 Fig. 9 shows the curve y = f(x), where f(x) = 1

cos2 x
, −1

2
π < x < 1

2
π, together with its asymptotes x = 1

2
π

and x = −1
2
π.

y

Fig.�9

O "
1

2
"

1

2
–

x

(i) Use the quotient rule to show that the derivative of
sin x

cos x
is

1

cos2 x
. [3]

(ii) Find the area bounded by the curve y = f(x), the x-axis, the y-axis and the line x = 1
4
π. [3]

The function g(x) is defined by g(x) = 1
2
f(x + 1

4
π).

(iii) Verify that the curves y = f(x) and y = g(x) cross at (0, 1). [3]

(iv) State a sequence of two transformations such that the curve y = f(x) is mapped to the curve
y = g(x).
On the copy of Fig. 9, sketch the curve y = g(x), indicating clearly the coordinates of the minimum
point and the equations of the asymptotes to the curve. [8]

(v) Use your result from part (ii) to write down the area bounded by the curve y = g(x), the x-axis,

the y-axis and the line x = −1
4
π. [1]
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2

2 3d 1 (1 ) .2
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M1 
M1 
B1 
 
A1 
[4] 

(1 + x2)1/3 
chain rule 
(1/3) u–2/3 (soi) 
 
cao, mark final answer 

Do not allow MR for square root 
their dy/du u  du/dx (available for wrong indices) 
no ft on ½ index 

oe e.g. 
2

2 32 (1 )
3

x x
�

� , 
2 23

2
3 (1 )

x

x�
, etc but must combine 2 with 1/3.  

2 2 1 4  x � t

� 2x + 1 t 4 � x t 1½  
or 2x + 1 �� 4 � x � – 2½  
 

 
M1 A1 
M1 A1 
[4] 

 
allow M1 for 1½ seen 
allow M1 for �2½ seen  

Same scheme for other methods, e.g.  squaring, graphing 
 
Penalise both > and < once only.  
�1 if both correct but final ans expressed incorrectly, e.g �2½ t x t 1½   or      
1½ d x ��2½  (or even �2½ � x � 1½ from previously correct work) e.g. SC3 

3 A = Sr2 
� dA/dr = 2Sr 
 When r = 2, dA/dr = 4S, dA/dt = 1 
 d d d.

d d d
A A r
t r t
  

� 1 = 4S.dr/dt 
� dr/dt = 1/4S = 0.0796 (mm/s) 
 

 
M1A1 
A1 
 
M1 
 
A1 
[5] 

 
2Sr 
soi (at any stage) 
 
chain rule (o.e) 
 
cao: 0.08 or better condone truncation 

 
M1A0 if incorrect notation, e.g. dy/dx, dr/dA, if seen. 2r is M1A0 
must be dA/dr (soi) and dA/dt  
any correct form stated with relevant variables , e.g. 
d d d. ,
d d d

r r A
t A t
 

d d d ,r r t etc. /
d d dt A A

 

 
allow 1/4S but mark final answer  

4 sin T� �BC/AC, cos T = AB/AC 
 AB2 + BC2 = AC2 
� (AB/AC)2 + (BC/AC)2 = 1  
� cos2T� + sin2T� = 1 
 Valid for (0° <) T� < 90° 
 

M1 
 
 
A1 
B1 
[3] 

or a/b, c/b  
condone taking AC = 1 
 
Must use Pythagoras 
allow  d, or ‘between 0 and 90’ or < 90 
allow < S/2 or ‘acute’ 

allow o/h, a/h etc if clearly marked on triangle.  
but must be stated 
 
arguing backwards unless � used A0 
 

 
5(i)  
 
 
 

 
B1 
B1 
B1 
[3] 

 
shape of y = ex – 1 and through O 
shape of y = 2e–x 
through (0, 2) (not (2,0)) 

for first and second B1s graphs must include negative x values 
condone no asymptote y = �1 shown 
asymptotic to x-axis (shouldn’t cross) 
 

(ii)  ex – 1 = 2e–x 
� e2x – ex = 2 
� (ex)2 – ex – 2 = 0 
� (ex – 2)(ex + 1) = 0 
� ex = 2    (or –1) 
� x = ln 2 
� y = 1 
 

M1 
 
M1 
 
B1 
B1 
B1cao 
[5] 

equating 
 
re-arranging into a quadratic in ex = 0 
 
stated  www  
www 
www 
 

 
 
allow one error but must have e2x = (ex)2 (soi) 
 
award even if not from quadratic method (i.e. by ‘fitting’) provided www 
allow for unsupported answers, provided www 
need not have used a quadratic, provided www 
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6 42( )x y x�   

� d2( )(1 ) 4
d

y
x y

x
� �   

� d 4 21
d 2( )

y
x x y x y

�   
� �

 

�           d 2 1
d

y
x x y
 �

�
 * 

 
 
M1 
A1 
 
 
 
A1 

 
 
Implicit differentiation of LHS 
correct expression = 4 
 
 
 
www (AG) 

 
Award no marks for solving for y and attempting to differentiate 
allow one error but must include dy/dx 
ignore superfluous dy/dx = … for M1, and for both A1s if not pursued 
condone missing brackets 
 
 
A0 if missing brackets in earlier working  

or  2 22 4x xy y x� �   

� d d2 2 2 2 4
d d

y y
x x y y

x x
� � �   

� d (2 2 ) 4 2 2
d

y
x y x y

x
�  � �  

� d 4 21 1
d 2 2

y
x x y x y
 �  �  * 

� �

 
M1dep 
A1 
 
 
 
A1 

 
Implicit differentiation of LHS 
dep correct expansion 
correct expression = 4 (oe after re-
arrangement) 
 
www (AG) 

 
allow 1 error provided 2xdy/dx and 2ydy/dx are correct, but must expand      
(x + y)2 correctly for M1 (so x2 + y2 = 4x is M0) 
ignore superfluous dy/dx = … for M1, and for both A1s  if not pursued 
 
 
A0 if missing brackets in earlier working 

When x = 1, y = 1, d 2 1 0
d 1 1

y
 

x
�  

�
 * B1 

[4] 
(AG) oe (e.g. from x + y = 2) or e.g 2/(x + y) � 1 = 0 � x + y = 2, � 4 = 4x, � x = 1, y = 1 (oe) 

7 (i)   bounds �S + 1, S + 1 
� –S + 1 < f(x) < S + 1 
 

B1B1 
B1cao 
[3] 

 
or … < y < … or (�S + 1, S + 1) 

 
not … < x < …, not ‘between …’ 

   (ii)  y = 2arctan x + 1  x l y 
 x = 2arctan y + 1 
� 1 arctan

2
x

y
�

  

�  1tan( )
2

x
y

�
  � 1 1f ( ) tan( )  

2
x

x� �
 

 
 
 
 
 
 
 
 
 
 

M1 
 
A1 
 
 
A1 
 
 
 
B1 
 
B1 
 
 
 
[5] 

attempt to invert formula 
 
or 1 arctan

2
y

x
�

  

  
 
 
 
 
reasonable reflection in y = x 
 
(1, 0) intercept indicated. 

one step is enough, i.e. y � 1 = 2arctan x or x � 1 = 2arctan y 
 
need not have interchanged x and y at this stage 
 
 
allow y = …  
 
 
 
curves must cross on y = x line if present (or close enough to imply intention) 
curves shouldn’t touch or cross in the third quadrant 

 

1 

1 

 7



4753 Mark Scheme January 2011 

8(i)     
31

0
d 1 ,

1
x

x let u x du dx
x

 �  
�³  

 when x = 0, u = 1, when x = 1, u = 2 
 32

1

( 1) du
u

u
�

 ³  

 3 22

1

( 3 3 1) du u u
u

u
� � �

 ³  

 2 2

1

1( 3 3 )du u u * 
u

 � � �³
 231 3 2

0
1

1 3d 3 ln
1 3 2

x
x u u u u

x
ª º � � �« »� ¬ ¼³

 

 8 1 3( 6 6 ln 2) ( 3 ln1)  
3 3 2

 � � � � � � �

 5 ln 2
6

 �  

 
 
B1 
B1 
 
M1 
 
A1dep 
 
B1 
 
M1 
 
A1cao 
[7] 

 
 
a = 1, b = 2 
(u – 1)3/u 
 
expanding (correctly) 
 
dep du = dx (o.e.) AG 
 

3 21 3 3 ln
3 2

u u u uª º� � �« »¬ ¼
 

substituting correct limits dep 
integrated 
must be exact – must be 5/6 

 
 
seen anywhere, e.g. in new limits 
 
 
 
 
e.g. du/dx = 1, condone missing dx’s and du’s, allow du = 1 
 
 
 
 upper � lower;  may be implied from 0.140… 
 
must have evaluated ln 1 = 0 
 

(ii)   y = x2 ln(1 + x) 
� 2 1. 2 .ln(1 )

1
dy

x x x
dx x

 � �  
�

 
2

2 ln(1 )
1

x
x x

x
 � �

�
 

 When x = 0, dy/dx = 0 + 0.ln 1 = 0 
(� Origin is a stationary point) 

M1 
B1 
A1 
 
 
M1 
A1cao 
 [5] 

Product  rule 
d/dx (ln(1 + x)) = 1/(1 + x) 
cao (oe) mark final ans 
 
 
substituting x = 0 into correct deriv 
www 

or d/dx (ln u) = 1/u where u = 1 + x 
ln1+x is A0 
 
 
when x = 0, dy/dx = 0 with no evidence of substituting M1A0 
but condone missing bracket in ln(1+x) 
 

(iii)   1 2

0
ln(1 )dA x x x �³  

  2let ln(1 ), d /u x v dx x �  

 3d 1 1,
d 1 3

u
v x

x x
  

�
 

� 
1 313

0
0

1 1ln(1 ) d
3 3 1

x
A x x x

x
ª º � �« » �¬ ¼ ³     

              1 5 1ln 2 ( ln 2)
3 18 3

 � �  

     1 5 1ln 2 ln 2
3 18 3

 � �  

     2 5ln 2
3 18

 �  

 

 
B1 
 
 
M1 
 
 
A1 
 
B1 
 
B1ft 
 

A1 
 
[6] 

 
Correct integral and limits 
 
 
parts correct 
 
 
 

1 ln 2 ...
3

 �  

… – 1/3 (result from part (i)) 
 
 
cao 

 
condone no dx, limits (and integral) can be implied by subsequent work 
 
 
u, du/dx, dv/dx and v all correct (oe) 
 
 
condone missing brackets 
 
 
 
condone missing bracket, can re-work from scratch 
 
oe e.g. 12ln 2 5 1 5, ln 4 , etc�

18 3 18
 �  but must have evaluated ln 1 =0 

Must combine the two ln terms 

 
 

 8



4753 Mark Scheme January 2011 

 9

 9(i)  
2

d sin cos .cos sin .( sin )( )
d cos cos

x x x x x
x x x

� �
  

                            
2 2

2

cos sin
cos
x x

x
�

 2

1
cos x

  * 

 
M1 A1 
 
A1 
 [3] 

 
Quotient (or product) rule 
 
(AG) 
 

product rule: 
2

1 1.cos sin ( )( sin )
cos cos

x x x
x x

� � �  but must show evidence 

of using chain rule on 1/cos x (or d/dx (sec x) = sec x tan x used) 

 (ii)  Area = /4

20

1 d
cos

x
x

S

³  

 = > @ /4

0
tan x S  

 = tan(S/4) – tan 0 = 1 
 

 
B1 
 
M1 
A1 
[3] 

 
correct integral and limits (soi) 

> @tan x or sin
cos

x
x

ª º
« »¬ ¼

 

 
condone no dx; limits can be implied from subsequent work 
 
 
unsupported scores  M0 

 (iii)   f(0) = 1/cos2(0) = 1   
          g(x) = 1/2cos2(x + S/4)   
g(0) = 1/2cos2(S/4) = 1 
(� f and g meet at (0, 1)) 

B1 
M1 
A1 
 
 [3] 

must show evidence 
 
 

 
or f(S/4) = 1/cos2(S/4) = 2 
so g(0) = ½ f(S/4) = 1 

(iv)   Translation in x-direction 
 through –S/4 
 Stretch in y-direction 
 scale factor ½  
 
 
 
 
 
 
 
 
 
 
 

M1 
A1 
M1 
A1 
B1ft 
B1ft 
B1 
B1dep 
 
 
 
 
[8] 
 

must be in x-direction, or  / 4
0
�§ ·
¨ ¸
© ¹

S

must be in y-direction 
 
asymptotes correct 
min point (–S/4, ½ )  
curves intersect on y-axis 
correct curve, dep B3, with 
asymptote lines indicated and 
correct, and TP in correct position 

‘shift’ or ‘move’ for ‘translation’  M1 A0; ¸ alone SC1 / 4
0
�§ ·
¨
© ¹

S

‘contract’ or ‘compress’ or ‘squeeze’ for ‘stretch’  M1A0; ‘enlarge’ M0 

stated or on graph; condone no x = …,  ft S/4 to right only (viz. �S/4, 3S/4) 
stated or on graph; ft S/4 to right only (viz. (S/4, ½ ) ) 
‘y-values halved’, or ‘x-values reduced by S/4, are M0 (not geometric 
transformations), but for M1 condone mention of x- and y- values provided 
transformation words are used. 
 
 

 
 (v) Same as area in (ii), but stretched by s.f. ½ .    
So area = ½ . 

 
 
B1ft 
[1] 

 
 
½ area in (ii) 
 
 

 
or > @

0 0 0
2 /4/4 /4

1 1 1g( )d d tan( / 4
2 cos ( / 4) 2

x x x x
x �� �

  � = ½  
�³ ³ SS S

S
S

allow unsupported 

x 

 
 

y 

O 
x=S/4 x=-3S/4 

(–S/4, ½)  

x=S/2 x=-S/2 
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