RECOGNISING ACHIEVEMENT

ADVANCED GCE
 MATHEMATICS (MEI)
 4753/01

Methods for Advanced Mathematics (C3)

QUESTION PAPER

Candidates answer on the printed answer book.
OCR supplied materials:

- Printed answer book 4753/01
- MEI Examination Formulae and Tables (MF2)

Other materials required:

- Scientific or graphical calculator

Wednesday 19 January 2011
Afternoon
Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the printed answer book and the question paper.

- The question paper will be found in the centre of the printed answer book.
- Write your name, centre number and candidate number in the spaces provided on the printed answer book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the printed answer book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the printed answer book and the question paper.

- The number of marks is given in brackets [] at the end of each question or part question on the question paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- \quad The total number of marks for this paper is 72.
- The printed answer book consists of 12 pages. The question paper consists of $\mathbf{8}$ pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

- Do not send this question paper for marking; it should be retained in the centre or destroyed.

Section A (36 marks)

1 Given that $y=\sqrt[3]{1+x^{2}}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

2 Solve the inequality $|2 x+1| \geqslant 4$.

3 The area of a circular stain is growing at a rate of $1 \mathrm{~mm}^{2}$ per second. Find the rate of increase of its radius at an instant when its radius is 2 mm .

4 Use the triangle in Fig. 4 to prove that $\sin ^{2} \theta+\cos ^{2} \theta=1$. For what values of θ is this proof valid?

Fig. 4

5 (i) On a single set of axes, sketch the curves $y=\mathrm{e}^{x}-1$ and $y=2 \mathrm{e}^{-x}$.
(ii) Find the exact coordinates of the point of intersection of these curves.

6 A curve is defined by the equation $(x+y)^{2}=4 x$. The point $(1,1)$ lies on this curve.
By differentiating implicitly, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x+y}-1$.
Hence verify that the curve has a stationary point at $(1,1)$.

7 Fig. 7 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=1+2 \arctan x, x \in \mathbb{R}$. The scales on the x - and y-axes are the same.

Fig. 7
(i) Find the range of f , giving your answer in terms of π.
(ii) Find $\mathrm{f}^{-1}(x)$, and add a sketch of the curve $y=\mathrm{f}^{-1}(x)$ to the copy of Fig. 7 .

Section B (36 Marks)

8 (i) Use the substitution $u=1+x$ to show that

$$
\int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x=\int_{a}^{b}\left(u^{2}-3 u+3-\frac{1}{u}\right) \mathrm{d} u,
$$

where a and b are to be found.
Hence evaluate $\int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x$, giving your answer in exact form.
Fig. 8 shows the curve $y=x^{2} \ln (1+x)$.

Fig. 8
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Verify that the origin is a stationary point of the curve.
(iii) Using integration by parts, and the result of part (i), find the exact area enclosed by the curve $y=x^{2} \ln (1+x)$, the x-axis and the line $x=1$.

9 Fig. 9 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{\cos ^{2} x},-\frac{1}{2} \pi<x<\frac{1}{2} \pi$, together with its asymptotes $x=\frac{1}{2} \pi$ and $x=-\frac{1}{2} \pi$.

Fig. 9
(i) Use the quotient rule to show that the derivative of $\frac{\sin x}{\cos x}$ is $\frac{1}{\cos ^{2} x}$.
(ii) Find the area bounded by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=\frac{1}{4} \pi$.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=\frac{1}{2} \mathrm{f}\left(x+\frac{1}{4} \pi\right)$.
(iii) Verify that the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ cross at $(0,1)$.
(iv) State a sequence of two transformations such that the curve $y=\mathrm{f}(x)$ is mapped to the curve $y=g(x)$.

On the copy of Fig. 9, sketch the curve $y=\mathrm{g}(x)$, indicating clearly the coordinates of the minimum point and the equations of the asymptotes to the curve.
(v) Use your result from part (ii) to write down the area bounded by the curve $y=\mathrm{g}(x)$, the x-axis, the y-axis and the line $x=-\frac{1}{4} \pi$.

	M1 M1 B1 A1 [4]	$\left(1+x^{2}\right)^{1 / 3}$ chain rule $(1 / 3) u^{-2 / 3}(\text { soi })$ cao, mark final answer	Do not allow MR for square root their $\mathrm{d} y / \mathrm{d} u \times \mathrm{d} u / d x$ (available for wrong indices) no ft on $1 / 2$ index oe e.g. $\frac{2 x\left(1+x^{2}\right)^{-\frac{2}{3}}}{3}, \frac{2 x}{3 \sqrt[3]{\left(1+x^{2}\right)^{2}}}$, etc but must combine 2 with $1 / 3$.
$\begin{array}{ll} \hline \mathbf{2} & \|2 x+1\| \geq 4 \\ \Rightarrow & 2 x+1 \geq 4 \Rightarrow x \geq 11 / 2 \\ \text { or } & 2 x+1 \leq-4 \Rightarrow x \leq-2^{1 / 2} \end{array}$	M1 A1 M1 A1 [4]	allow M1 for $11 / 2$ seen allow M1 for $-2 \frac{1}{2}$ seen	Same scheme for other methods, e.g. squaring, graphing Penalise both $>$ and $<$ once only. -1 if both correct but final ans expressed incorrectly, e.g $-2 \frac{1}{2} \geq x \geq 11 / 2$ or $11 / 2 \leq x \leq-21 / 2$ (or even $-21 / 2 \leq x \leq 11 / 2$ from previously correct work) e.g. SC3
$\begin{array}{ll} \text { 3 } & A=\pi r^{2} \\ \Rightarrow & \mathrm{~d} A / \mathrm{d} r=2 \pi r \\ & \text { When } r=2, \mathrm{~d} A / \mathrm{d} r=4 \pi, \mathrm{~d} A / \mathrm{d} t=1 \\ & \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} r} \cdot \frac{\mathrm{~d} r}{\mathrm{~d} t} \\ \Rightarrow & 1=4 \pi \cdot \mathrm{~d} r / \mathrm{d} t \\ \Rightarrow & \mathrm{~d} r / \mathrm{d} t=1 / 4 \pi=0.0796(\mathrm{~mm} / \mathrm{s}) \end{array}$	$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	$2 \pi r$ soi (at any stage) chain rule (o.e) cao: 0.08 or better condone truncation	M1A0 if incorrect notation, e.g. $\mathrm{d} y / \mathrm{d} x, \mathrm{~d} r / \mathrm{d} A$, if seen. $2 r$ is M1A0 must be $\mathrm{d} A / \mathrm{d} r$ (soi) and $\mathrm{d} A / \mathrm{d} t$ any correct form stated with relevant variables, e.g. $\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} A} \cdot \frac{\mathrm{~d} A}{\mathrm{~d} t}, \frac{\mathrm{~d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} A} / \frac{\mathrm{d} t}{\mathrm{~d} A}$, etc. allow $1 / 4 \pi$ but mark final answer
$\begin{array}{ll} \hline 4 & \sin \theta=\mathrm{BC} / \mathrm{AC}, \cos \theta=\mathrm{AB} / \mathrm{AC} \\ & \mathrm{AB}+\mathrm{BC}^{2}=\mathrm{AC} \\ \Rightarrow \quad & (\mathrm{AB} / \mathrm{AC})^{2}+(\mathrm{BC} / \mathrm{AC})^{2}=1 \\ \Rightarrow \quad & \cos ^{2} \theta+\sin ^{2} \theta=1 \\ & \text { Valid for }\left(0^{\circ}<\right) \theta<90^{\circ} \end{array}$	M1 A1 B1 [3]	or $a / b, c / b$ condone taking $\mathrm{AC}=1$ Must use Pythagoras allow \leq, or 'between 0 and 90 ' or <90 allow $<\pi / 2$ or 'acute'	allow $\mathrm{o} / \mathrm{h}, \mathrm{a} / \mathrm{h}$ etc if clearly marked on triangle. but must be stated $\text { arguing backwards unless } \Leftrightarrow \text { used A0 }$
5(i)	B1 B1 B1 [3]	$\begin{aligned} & \text { shape of } y=\mathrm{e}^{x}-1 \text { and through } \mathrm{O} \\ & \text { shape of } y=2 \mathrm{e}^{-x} \\ & \text { through }(0,2)(\operatorname{not}(2,0)) \end{aligned}$	for first and second B1s graphs must include negative x values condone no asymptote $y=-1$ shown asymptotic to x-axis (shouldn't cross)
$\begin{array}{ll} \text { (ii) } & \mathrm{e}^{x}-1=2 \mathrm{e}^{-x} \\ \Rightarrow & \mathrm{e}^{2 x}-\mathrm{e}^{x}=2 \\ \Rightarrow & \left(\mathrm{e}^{x}\right)^{2}-\mathrm{e}^{x}-2=0 \\ \Rightarrow & \left(\mathrm{e}^{x}-2\right)\left(\mathrm{e}^{x}+1\right)=0 \\ \Rightarrow & \mathrm{e}^{x}=2(\text { or }-1) \\ \Rightarrow & x=\ln 2 \\ \Rightarrow & y=1 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1cao } \\ & {[5]} \end{aligned}$	equating re-arranging into a quadratic in $\mathrm{e}^{x}=0$ stated www www www	allow one error but must have $\mathrm{e}^{2 x}=\left(\mathrm{e}^{x}\right)^{2}$ (soi) award even if not from quadratic method (i.e. by 'fitting') provided www allow for unsupported answers, provided www need not have used a quadratic, provided www

$\begin{array}{ll} \mathbf{6} & (x+y)^{2}=4 x \\ \Rightarrow & 2(x+y)\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=4 \\ \Rightarrow & 1+\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{2(x+y)}=\frac{2}{x+y} \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{x+y}-1 * \end{array}$	M1 A1 A1	Implicit differentiation of LHS correct expression $=4$ www (AG)	Award no marks for solving for y and attempting to differentiate allow one error but must include $\mathrm{d} y / \mathrm{d} x$ ignore superfluous $\mathrm{d} y / \mathrm{d} x=\ldots$ for M1, and for both A1s if not pursued condone missing brackets A0 if missing brackets in earlier working
$\begin{array}{ll} \text { or } & x^{2}+2 x y+y^{2}=4 x \\ \Rightarrow & 2 x+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}(2 x+2 y)=4-2 x-2 y \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4}{2 x+2 y}-1=\frac{2}{x+y}-1 * \end{array}$	M1dep A1 A1	Implicit differentiation of LHS dep correct expansion correct expression $=4$ (oe after rearrangement) www (AG)	allow 1 error provided $2 x \mathrm{~d} y / \mathrm{d} x$ and $2 y \mathrm{~d} y / \mathrm{d} x$ are correct, but must expand $(x+y)^{2}$ correctly for M1 (so $x^{2}+y^{2}=4 x$ is M0) ignore superfluous $\mathrm{d} y / \mathrm{d} x=\ldots$ for M1, and for both A1s if not pursued A0 if missing brackets in earlier working
When $x=1, y=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{1+1}-1=0$ *	$\begin{aligned} & \text { B1 } \\ & {[4]} \end{aligned}$	(AG) oe (e.g. from $x+y=2$)	or e.g $2 /(x+y)-1=0 \Rightarrow x+y=2, \Rightarrow 4=4 x, \Rightarrow x=1, y=1$ (oe)
$\begin{array}{ll} \hline 7 \text { (i) } & \text { bounds }-\pi+1, \pi+1 \\ \Rightarrow & -\pi+1<\mathrm{f}(x)<\pi+1 \end{array}$	$\begin{aligned} & \hline \text { B1B1 } \\ & \text { B1cao } \end{aligned}$ [3]	or $\ldots<y<\ldots$ or $(-\pi+1, \pi+1)$	not $\ldots<x<\ldots$, not 'between ..
$\begin{aligned} & \text { (ii) } y=2 \arctan x+1 x \leftrightarrow y \\ & x=2 \arctan y+1 \\ & \Rightarrow \quad \frac{x-1}{2}=\arctan y \\ & y=\tan \left(\frac{x-1}{2}\right) \Rightarrow \mathrm{f}^{-1}(x)=\tan \left(\frac{x-1}{2}\right) \end{aligned}$	M1 A1 A1 B1 B1 [5]	attempt to invert formula or $\frac{y-1}{2}=\arctan x$ reasonable reflection in $y=x$ $(1,0)$ intercept indicated.	one step is enough, i.e. $y-1=2 \arctan x$ or $x-1=2 \arctan y$ need not have interchanged x and y at this stage allow $y=\ldots$ curves must cross on $y=x$ line if present (or close enough to imply intention) curves shouldn't touch or cross in the third quadrant

8(i) $\begin{aligned} & \int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x \quad \text { let } u=1+x, d u=d x \\ & \text { when } x=0, u=1, \text { when } x=1, u=2 \\ & =\int_{1}^{2} \frac{(u-1)^{3}}{u} \mathrm{~d} u \\ & =\int_{1}^{2} \frac{\left(u^{3}-3 u^{2}+3 u-1\right)}{u} \mathrm{~d} u \\ & =\int_{1}^{2}\left(u^{2}-3 u+3-\frac{1}{u}\right) \mathrm{d} u \\ & \int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x=\left[\frac{1}{3} u^{3}-\frac{3}{2} u^{2}+3 u-\ln u\right]_{1}^{2} \\ & =\left(\frac{8}{3}-6+6-\ln 2\right)-\left(\frac{1}{3}-\frac{3}{2}+3-\ln 1\right) \\ & =\frac{5}{6}-\ln 2 \end{aligned}$	B1 B1 M1 A1dep B1 M1 A1cao [7]	$\begin{aligned} & a=1, b=2 \\ & (u-1)^{3} / u \end{aligned}$ expanding (correctly) $\operatorname{dep} \mathrm{d} u=\mathrm{d} x$ (o.e.) $\mathbf{A G}$ $\left[\frac{1}{3} u^{3}-\frac{3}{2} u^{2}+3 u-\ln u\right]$ substituting correct limits dep integrated must be exact - must be $5 / 6$	seen anywhere, e.g. in new limits e.g. $\mathrm{d} u / \mathrm{d} x=1$, condone missing $\mathrm{d} x$'s and $\mathrm{d} u$'s, allow $\mathrm{d} u=1$ upper - lower; may be implied from $0.140 \ldots$ must have evaluated $\ln 1=0$
$\begin{array}{ll} \text { (ii) } & y=x^{2} \ln (1+x) \\ \Rightarrow & \frac{d y}{d x}=x^{2} \cdot \frac{1}{1+x}+2 x \cdot \ln (1+x) \\ & =\frac{x^{2}}{1+x}+2 x \ln (1+x) \\ & \text { When } x=0, \mathrm{~d} y / \mathrm{d} x=0+0 . \ln 1=0 \\ (\Rightarrow \quad & \text { Origin is a stationary point }) \end{array}$	M1 B1 A1 M1 A1cao [5]	Product rule $\mathrm{d} / \mathrm{d} x(\ln (1+x))=1 /(1+x)$ cao (oe) mark final ans substituting $x=0$ into correct deriv www	or $\mathrm{d} / \mathrm{d} x(\ln u)=1 / u$ where $u=1+x$ $\ln 1+x$ is A0 when $x=0, \mathrm{~d} y / \mathrm{d} x=0$ with no evidence of substituting M1A0 but condone missing bracket in $\ln (1+x)$
$\text { (iii) } \begin{aligned} A & =\int_{0}^{1} x^{2} \ln (1+x) \mathrm{d} x \\ \text { let } u & =\ln (1+x), \mathrm{d} v / d x=x^{2} \\ \frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{1}{1+x}, v=\frac{1}{3} x^{3} \\ \Rightarrow \quad A & =\left[\frac{1}{3} x^{3} \ln (1+x)\right]_{0}^{1}-\int_{0}^{1} \frac{1}{3} \frac{x^{3}}{1+x} \mathrm{~d} x \\ & =\frac{1}{3} \ln 2-\left(\frac{5}{18}-\frac{1}{3} \ln 2\right) \\ & =\frac{1}{3} \ln 2-\frac{5}{18}+\frac{1}{3} \ln 2 \\ & =\frac{2}{3} \ln 2-\frac{5}{18} \end{aligned}$	B1 M1 A1 B1 B1ft A1 [6]	Correct integral and limits parts correct $\begin{aligned} & =\frac{1}{3} \ln 2-\ldots \\ & \ldots-1 / 3 \text { (result from part (i)) } \end{aligned}$ cao	condone no $\mathrm{d} x$, limits (and integral) can be implied by subsequent work $u, \mathrm{~d} u / \mathrm{d} x, \mathrm{~d} v / \mathrm{d} x$ and v all correct (oe) condone missing brackets condone missing bracket, can re-work from scratch oe e.g. $=\frac{12 \ln 2-5}{18}, \frac{1}{3} \ln 4-\frac{5}{18}$, etc but must have evaluated $\ln 1=0$ Must combine the two ln terms

$\text { 9(i) } \begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sin x}{\cos x}\right) & =\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{\cos ^{2} x} \\ & =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x} \end{aligned} *$	M1 A1 A1 [3]	Quotient (or product) rule $(\mathbf{A G})$	product rule: $\frac{1}{\cos x} \cdot \cos x+\sin x\left(-\frac{1}{\cos ^{2} x}\right)(-\sin x)$ but must show evidence of using chain rule on $1 / \cos x(\operatorname{or} \mathrm{~d} / \mathrm{d} x(\sec x)=\sec x \tan x$ used $)$
$\text { (ii) Area }=\int_{0}^{\pi / 4} \frac{1}{\cos ^{2} x} \mathrm{~d} x .$	B1 M1 A1 [3]	correct integral and limits (soi) $[\tan x] \text { or }\left[\frac{\sin x}{\cos x}\right]$	condone no $\mathrm{d} x$; limits can be implied from subsequent work unsupported scores M0
$\begin{array}{ll} \text { (iii) } & \mathrm{f}(0)=1 / \cos ^{2}(0)=1 \\ & \mathrm{~g}(x)=1 / 2 \cos ^{2}(x+\pi / 4) \\ \mathrm{g}(0)=1 / 2 \cos ^{2}(\pi / 4)=1 \\ (\Rightarrow \quad \mathrm{f} \text { and } \mathrm{g} \text { meet at }(0,1)) \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & {[3]} \end{aligned}$	must show evidence	or $\mathrm{f}(\pi / 4)=1 / \cos ^{2}(\pi / 4)=2$ so $g(0)=1 / 2 f(\pi / 4)=1$
(iv) Translation in x-direction through $-\pi / 4$ Stretch in y-direction scale factor $1 / 2$	M1 A1 M1 A1 B1ft B1ft B1 B1dep [8]	must be in x-direction, or $\binom{-\pi / 4}{0}$ must be in y-direction asymptotes correct min point ($-\pi / 4,1 / 2$) curves intersect on y-axis correct curve, dep B3, with asymptote lines indicated and correct, and TP in correct position	'shift' or 'move' for 'translation' M1 A0; $\binom{-\pi / 4}{0}$ alone SC1 'contract' or 'compress' or 'squeeze' for 'stretch’ M1A0; 'enlarge' M0 stated or on graph; condone no $x=\ldots, \mathrm{ft} \pi / 4$ to right only (viz. $-\pi / 4,3 \pi / 4$) stated or on graph; $\mathrm{ft} \pi / 4$ to right only (viz. $(\pi / 4,1 / 2$)) ' y-values halved', or ' x-values reduced by $\pi / 4$, are M0 (not geometric transformations), but for M1 condone mention of x - and y-values provided transformation words are used.
(v) Same as area in (ii), but stretched by s.f. $1 / 2$. So area $=1 / 2$.	$\begin{aligned} & \text { B1ft } \\ & \text { [1] } \end{aligned}$	$1 / 2$ area in (ii)	or $\int_{-\pi / 4}^{0} \mathrm{~g}(x) \mathrm{d} x=\frac{1}{2} \int_{-\pi / 4}^{0} \frac{1}{\cos ^{2}(x+\pi / 4)} \mathrm{d} x=\frac{1}{2}\left[\tan (x+\pi / 4]_{-\pi / 4}^{0}=1 / 2\right.$ allow unsupported

