RECOGNISING ACHIEVEMENT

ADVANCED GCE
 MATHEMATICS (MEI)
 4753/01

Methods for Advanced Mathematics (C3)

QUESTION PAPER

Candidates answer on the printed answer book.
OCR supplied materials:

- Printed answer book 4753/01
- MEI Examination Formulae and Tables (MF2)

Other materials required:

- Scientific or graphical calculator

Monday 20 June 2011
Morning
Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the printed answer book and the question paper.

- The question paper will be found in the centre of the printed answer book.
- Write your name, centre number and candidate number in the spaces provided on the printed answer book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the printed answer book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the printed answer book and the question paper.

- The number of marks is given in brackets [] at the end of each question or part question on the question paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- The printed answer book consists of 16 pages. The question paper consists of 4 pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

- Do not send this question paper for marking; it should be retained in the centre or destroyed.

Section A (36 marks)

1 Solve the equation $|2 x-1|=|x|$.

2 Given that $\mathrm{f}(x)=2 \ln x$ and $\mathrm{g}(x)=\mathrm{e}^{x}$, find the composite function $\mathrm{gf}(x)$, expressing your answer as simply as possible.

3 (i) Differentiate $\frac{\ln x}{x^{2}}$, simplifying your answer.
(ii) Using integration by parts, show that $\int \frac{\ln x}{x^{2}} \mathrm{~d} x=-\frac{1}{x}(1+\ln x)+c$.

4 The height h metres of a tree after t years is modelled by the equation

$$
h=a-b \mathrm{e}^{-k t}
$$

where a, b and k are positive constants.
(i) Given that the long-term height of the tree is 10.5 metres, and the initial height is 0.5 metres, find the values of a and b.
(ii) Given also that the tree grows to a height of 6 metres in 8 years, find the value of k, giving your answer correct to 2 decimal places.

5 Given that $y=x^{2} \sqrt{1+4 x}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x(5 x+1)}{\sqrt{1+4 x}}$.

6 A curve is defined by the equation $\sin 2 x+\cos y=\sqrt{3}$.
(i) Verify that the point $\mathrm{P}\left(\frac{1}{6} \pi, \frac{1}{6} \pi\right)$ lies on the curve.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

Hence find the gradient of the curve at the point P .
$7 \quad$ (i) Multiply out $\left(3^{n}+1\right)\left(3^{n}-1\right)$.
(ii) Hence prove that if n is a positive integer then $3^{2 n}-1$ is divisible by 8 .

Section B (36 marks)

Fig. 8

Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{\mathrm{e}^{x}+\mathrm{e}^{-x}+2}$.
(i) Show algebraically that $\mathrm{f}(x)$ is an even function, and state how this property relates to the curve $y=\mathrm{f}(x)$.
(ii) Find $\mathrm{f}^{\prime}(x)$.
(iii) Show that $\mathrm{f}(x)=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}$.
(iv) Hence, using the substitution $u=\mathrm{e}^{x}+1$, or otherwise, find the exact area enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, and the lines $x=0$ and $x=1$.
(v) Show that there is only one point of intersection of the curves $y=\mathrm{f}(x)$ and $y=\frac{1}{4} \mathrm{e}^{x}$, and find its coordinates.

[Question 9 is printed overleaf.]

9 Fig. 9 shows the curve $y=\mathrm{f}(x)$. The endpoints of the curve are $\mathrm{P}(-\pi, 1)$ and $\mathrm{Q}(\pi, 3)$, and $\mathrm{f}(x)=a+\sin b x$, where a and b are constants.

Fig. 9
(i) Using Fig. 9, show that $a=2$ and $b=\frac{1}{2}$.
(ii) Find the gradient of the curve $y=\mathrm{f}(x)$ at the point $(0,2)$.

Show that there is no point on the curve at which the gradient is greater than this.
(iii) Find $\mathrm{f}^{-1}(x)$, and state its domain and range.

Write down the gradient of $y=\mathrm{f}^{-1}(x)$ at the point $(2,0)$.
(iv) Find the area enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=\pi$.

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE. of the University of Cambridge.

$\begin{array}{\|ll} \hline \mathbf{1} & \|2 x-1\|=\|x\| \\ \Rightarrow & 2 x-1=x, x=1 \\ \text { or } & -(2 x-1)=x, x=1 / 3 \end{array}$	M1A1 M1A1 [4]	www www, or $2 x-1=-x$ must be exact for A1 (e.g. not 0.33 , but allow $0 . \dot{3}$) condone doing both equalities in one line e.g. $-x=2 x-1=x$, etc	allow unsupported answers or from graph or squaring $\Rightarrow 3 x^{2}-4 x+1=0$ M1 $\Rightarrow(3 x-1)(x-1)=0$ M1 factorising, formula or comp. square $\Rightarrow x=1,1 / 3$ A1 A1 allow M1 for sign errors in factorisation -1 if more than two solutions offered, but isw inequalities
$\mathbf{2} \quad \begin{aligned} \mathrm{gf}(x) & =\mathrm{e}^{2 \ln x} \\ & =\mathrm{e}^{\ln x^{2}} \\ & =x^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & \text { Forming } \operatorname{gf}(x) \\ & \text { (soi) } \end{aligned}$	Doing fg: $2 \ln \left(\mathrm{e}^{x}\right)=2 x \mathrm{SC} 1$ Allow x^{2} (but not $2 x$) unsupported
$\text { 3(i) } \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{x^{2} \cdot \frac{1}{x}-\ln x \cdot 2 x}{x^{4}} \\ & =\frac{x-2 x \ln x}{x^{4}} \\ & =\frac{1-2 \ln x}{x^{3}} \end{aligned}$	M1 B1 A1 A1 [4]	quotient rule with $u=\ln x$ and $v=x^{2}$ $\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ soi correct expression (o.e.) o.e. cao, mark final answer, but must have divided top and bottom by x	Consistent with their derivatives. $u \mathrm{~d} v \pm v \mathrm{~d} u$ in the quotient rule is M 0 Condone $\ln x .2 x=\ln 2 x^{2}$ for this A1 (provided $\ln x .2 x$ is shown) e.g. $\frac{1}{x^{3}}-\frac{2 \ln x}{x^{3}}, x^{-3}-2 x^{-3} \ln x$
$\begin{aligned} \text { or } & \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x^{-3} \ln x+x^{-2}\left(\frac{1}{x}\right) \\ & =-2 x^{-3} \ln x+x^{-3} \end{aligned}$	Mi B1 A1 A1 [4]	product rule with $u=x^{-2}$ and $v=\ln x$ $\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ soi correct expression o.e. cao, mark final answer, must simplify the $x^{-2} .(1 / x)$ term.	or vice-versa
$\text { (ii) } \begin{aligned} & \int \frac{\ln x}{x^{2}} \mathrm{~d} x \text { let } u=\ln x, \mathrm{~d} u / \mathrm{d} x=1 / x \\ & =-\frac{1}{x} \ln x+\int \frac{1}{x} \cdot \frac{1}{x} \mathrm{~d} x=1 / x^{2}, v=-x^{-1} \\ & =-\frac{1}{x} \ln x+\int \frac{1}{x^{2}} \mathrm{~d} x \\ & = \\ & =-\frac{1}{x} \ln x-\frac{1}{x}+c \\ & =-\frac{1}{x}(\ln x+1)+c^{*} \end{aligned}$	M1 A1 A1 A1 [4]	Integration by parts with $u=\ln x, \mathrm{~d} u / \mathrm{d} x=1 / x, \mathrm{~d} v / \mathrm{d} x=1 / x^{2}, v=-x^{-1}$ must be correct, condone $+c$ condone missing c NB AG must have c shown in final answer	Must be correct at this stage. Need to see $1 / x^{2}$

$\text { 4(i) } \begin{aligned} & h=a-b \mathrm{e}^{-k t} \Rightarrow a=10.5 \\ & \\ & \text { (their) } a-b \mathrm{e}^{0}=0.5 \\ & \Rightarrow b=10 \end{aligned}$	B1 M1 A1cao [3]	a need not be substituted	
$\begin{array}{ll} \text { (ii) } & h=10.5-10 \mathrm{e}^{-k t} \\ & \text { When } t=8, h=10.5-10 \mathrm{e}^{-8 k}=6 \\ \Rightarrow & 10 \mathrm{e}^{-8 k}=4.5 \\ \Rightarrow & -8 k=\ln 0.45 \\ \Rightarrow & k=\ln 0.45 /(-8)=0.09981 \ldots=0.10 \end{array}$	M1 M1 A1 $[3]$	ft their a and b (even if made up) taking lns correctly on a correct rearrangement - $\mathrm{ft} a, b$ if not eased cao (www) but allow 0.1	allow M1 for $a-b \mathrm{e}^{-8 k}=6$ allow a and b unsubstituted allow their 0.45 (or 4.5) to be negative
	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	product rule with $u=x^{2}, v=\sqrt{ }(1+4 x)$ $1 / 2(\ldots)^{-1 / 2}$ soi correct expression factorising or combining fractions NB AG	consistent with their derivatives; condone wrong index in v used for M1 only (need not factor out the $2 x$) must have evidence of $x+1+4 x$ oe or $2 x(5 x+1)(1+4 x)^{-1 / 2}$ or $2 x(5 x+1) /(1+4 x)^{1 / 2}$
6(i) $\quad \sin (\pi / 3)+\cos (\pi / 6)=\sqrt{ } 3 / 2+\sqrt{ } 3 / 2=\sqrt{ } 3$	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \\ & \hline \end{aligned}$	must be exact, must show working	Not just $\sin (\pi / 3)+\cos (\pi / 6)=\sqrt{ } 3$, if substituting for y and solving for x (or vv) must evaluate $\sin \pi / 3$ e.g. not $\operatorname{arcos}(\sqrt{ } 3-\sin \pi / 3)$
$\begin{array}{ll} \hline \text { (ii) } & 2 \cos 2 x-\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ \Rightarrow & 2 \cos 2 x=\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \cos 2 x}{\sin y} \\ & \text { When } x=\pi / 6, y=\pi / 6 \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \cos \pi / 3}{\sin \pi / 6}=2 \end{array}$	M1 A1 A1cao M1dep A1 [5]	Implicit differentiation correct expression substituting dep $1^{\text {st }} \mathrm{M} 1$ www	allow one error, but must have (\pm) $\sin y \mathrm{~d} y / \mathrm{d} x$. Ignore $\mathrm{d} y / \mathrm{d} x=\ldots$ unless pursued. $2 \cos 2 x \mathrm{~d} x-\sin y \mathrm{~d} y=0$ is M1A1 (could differentiate wrt y, get $\mathrm{d} x / \mathrm{d} y$, etc.) $\begin{aligned} & \frac{-2 \cos 2 x}{-\sin y} \text { is A0 } \\ & \text { or } 30^{\circ} \end{aligned}$
7 (i) $\quad\left(3^{n}+1\right)\left(3^{n}-1\right)=\left(3^{n}\right)^{2}-1$ or $3^{2 n}-1$	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	mark final answer	or $9^{n}-1$; penalise $3^{n^{2}}$ if it looks like 3 to the power n^{2}.
(ii) 3^{n} is odd $\Rightarrow 3^{n}+1$ and $3^{n}-1$ both even As consecutive even nos, one must be divisible by 4 , so product is divisible by 8 .	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & 3^{n} \text { is odd } \\ & \Rightarrow 3^{n}+1 \text { and } 3^{n}-1 \text { both even } \\ & \text { completion } \end{aligned}$	Induction: If true for $n, 3^{2 n}-1=8 k$, so $3^{2 n}=1+8 k$, M1 $3^{2(n+1)}-1=9 \times(8 k+1)-1=72 k+8=8(9 k+1)$ so div by 8 . A1 When $n=1,3^{2}-1=8$ div by 8 , true A1(or similar with 9^{n})

$\text { 8(i) } \begin{aligned} & \mathrm{f}(-x)=\frac{1}{\mathrm{e}^{-x}+\mathrm{e}^{-(-x)}+2} \\ &=\mathrm{f}(x),[\Rightarrow \mathrm{f} \text { is even * }] \\ & \text { Symmetrical about } \mathrm{O} y \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & {[3]} \\ & \hline \end{aligned}$	substituting $-x$ for x in $\mathrm{f}(x)$ condone 'reflection in y-axis'	Can imply that $\mathrm{e}^{-(-x)}=\mathrm{e}^{x}$ from $\mathrm{f}(-x)=\frac{1}{\mathrm{e}^{-x}+\mathrm{e}^{x}+2}$ Must mention axis
$\begin{aligned} \text { (ii) } \quad \begin{aligned} \mathrm{f}^{\prime}(x) & =-\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+2\right)^{-2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \\ & =\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+2\right) \cdot 0-\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+2\right)^{2}} \\ & =\frac{\left(\mathrm{e}^{-x}-\mathrm{e}^{x}\right)}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+2\right)^{2}} \end{aligned} . \end{aligned}$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \\ \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	$\mathrm{d} / \mathrm{d} x\left(\mathrm{e}^{x}\right)=\mathrm{e}^{x}$ and $\mathrm{d} / \mathrm{d} x\left(\mathrm{e}^{-x}\right)=-\mathrm{e}^{-x}$ soi chain or quotient rule condone missing bracket on top if correct thereafter o.e. mark final answer	If differentiating $\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}$ withhold A1 (unless result in (iii) proved here) $\text { e.g. } \frac{1}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+2\right)^{2}} \times\left(\mathrm{e}^{-x}-\mathrm{e}^{x}\right)$
$\text { (iii) } \begin{aligned} \mathrm{f}(x) & =\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+1+2 \mathrm{e}^{x}} \\ & =\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}} * \end{aligned}$	M1 A1 [2]	\times top and bottom by e^{x} (correctly) condone $\mathrm{e}^{x^{2}}$ for M1 but not A1 NB AG	or $\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}=\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1} \mathrm{M} 1,=\frac{1}{\mathrm{e}^{x}+\mathrm{e}^{-x}+2} \mathrm{~A} 1$ condone no $\mathrm{e}^{2 x}=\left(\mathrm{e}^{x}\right)^{2}$, for both M1 and A1
$\begin{array}{ll} \text { (iv) } \quad & A=\int_{0}^{1} \frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}} \mathrm{~d} x \\ & \text { let } u=\mathrm{e}^{x}+1, \mathrm{~d} u=\mathrm{e}^{x} \mathrm{~d} x \\ & \text { when } x=0, u=2 ; \text { when } x=1, u=\mathrm{e}+1 \\ \Rightarrow \quad & A=\int_{2}^{1+e} \frac{1}{u^{2}} \mathrm{~d} u \\ & =\left[-\frac{1}{u}\right]_{2}^{1+e} \\ = & -\frac{1}{1+\mathrm{e}}+\frac{1}{2}=\frac{1}{2}-\frac{1}{1+\mathrm{e}} \end{array}$	B1 M1 A1 M1 A1cao [5]	correct integral and limits $\begin{aligned} & \int \frac{1}{u^{2}}(\mathrm{~d} u) \\ & {\left[-\frac{1}{u}\right]} \end{aligned}$ substituting correct limits (dep $1^{\text {st }} \mathrm{M} 1$ and integration) o.e. mark final answer. Must be exact Don't allow e ${ }^{1}$.	condone no $\mathrm{d} x$, must use $\mathrm{f}(x)=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}$. Limits may be implied by subsequent work. If 0.231 .. unsupported, allow $1^{\text {st }} \mathrm{B} 1$ only or by inspection $\left[\frac{k}{e^{x}+1}\right] \mathrm{M} 1\left[-\frac{1}{e^{x}+1}\right] \mathrm{A} 1$ upper-lower; 2 and $1+\mathrm{e}$ (or 3.7 ..)for u, or 0 and 1 for x if substituted back (correctly) e.g. $\frac{\mathrm{e}-1}{2(1+\mathrm{e})}$. Can isw 0.231 , which may be used as evidence of M1. Can isw numerical ans (e.g. 0.231) but not algebraic errors
(v) Curves intersect when $\mathrm{f}(x)=\frac{1}{4} \mathrm{e}^{x}$ $\begin{array}{ll} \Rightarrow \quad & \left(\mathrm{e}^{x}+1\right)^{2}=4 \\ \Rightarrow \quad & \mathrm{e}^{x}=1 \text { or }-3 \\ & \text { so as } \mathrm{e}^{x}>0, \text { only one solution } \\ & \mathrm{e}^{x}=1 \Rightarrow x=0 \\ & \text { when } x=0, y=1 / 4 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[5]} \end{aligned}$	soi or equivalent quadratic - must be correct getting $\mathrm{e}^{x}=1$ and discounting other sol ${ }^{\mathrm{n}}$ $x=0$ www (for this value) $y=1 / 4 \mathrm{www}$ (for the x value)	$\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}} \text { or } \frac{1}{e^{x}+e^{-x}+2}=\frac{1}{4} \mathrm{e}^{x}$ With $\mathrm{e}^{2 x}$ or $\left(\mathrm{e}^{x}\right)^{2}$, condone $\mathrm{e}^{x^{2}}, \mathrm{e}^{0}$ www e.g. $\mathrm{e}^{x}=-1\left[\right.$ or $\left.\mathrm{e}^{x}+1=-2\right]$ not possible www unless verified Do not allow unsupported. A sketch is not sufficient

$\begin{array}{ll} \text { 9(i) } & \text { When } x=0, \mathrm{f}(x)=a=2^{*} \\ & \text { When } x=\pi, \mathrm{f}(\pi)=2+\sin b \pi=3 \\ \Rightarrow \quad & \sin b \pi=1 \\ \Rightarrow \quad & b \pi=1 / 2 \pi, \operatorname{so} b=1 / 2 * \\ \text { or } \quad 1=a+\sin (-\pi b)(=a-\sin \pi b) \\ & 3=a+\sin (\pi b) \\ \Rightarrow & 2=2 \sin \pi b, \sin \pi b=1, \pi b=\pi / 2, b=1 / 2 \\ \Rightarrow & 3=a+1 \text { or } 1=a-1 \Rightarrow a=2(\text { oe for } b) \end{array}$	B1 M1 A1 [3]	NB AG ' a is the y-intercept' not enough but allow verification $(2+\sin 0=2)$ or when $x=-\pi, \mathrm{f}(-\pi)=2+\sin (-b \pi)=1$ $\Rightarrow \sin (-b \pi)=-1$ condone using degrees $\Rightarrow-b \pi=-1 / 2 \pi, b=1 / 2$ NB AG M1 for both points substituted A1 solving for b or a A1 substituting to get a (or b)	or equiv transformation arguments : e.g. 'curve is shifted up 2 so $a=2$ '. e.g. period of sine curve is 4π, or stretched by sf. 2 in x-direction (not squeezed or squashed by $1 / 2$) $\Rightarrow b=1 / 2$ If verified allow M1A0 If $y=2+\sin 1 / 2 x$ verified at two points, SC2 A sequence of sketches starting from $y=\sin x$ showing clearly the translation and the stretch (in either order) can earn full marks
$\begin{array}{ll} \hline \text { (ii) } & \mathrm{f}^{\prime}(x)=1 / 2 \cos 1 / 2 x \\ \Rightarrow & \mathrm{f}^{\prime}(0)=1 / 2 \\ \Rightarrow & \text { Maximum value of } \cos 1 / 2 x \text { is } 1 \\ \Rightarrow & \text { max value of gradient is } 1 / 2 \end{array}$	M1 A1 A1 M1 A1 [5]	$\pm k \cos ^{1 / 2} x$ cao www or $\mathrm{f}^{\prime \prime}(x)=-1 / 4 \sin 1 / 2 x$ $\mathrm{f}^{\prime \prime}(x)=0 \Rightarrow x=0$, so max val of $\mathrm{f}^{\prime}(x)$ is $1 / 2$	
$\begin{array}{ll} \hline \text { (iii) } & y=2+\sin 1 / 2 x x \leftrightarrow y \\ & x=2+\sin 1 / 2 y \\ \Rightarrow & x-2=\sin 1 / 2 y \\ \Rightarrow & \arcsin (x-2)=1 / 2 y \\ \Rightarrow & y=\mathrm{f}^{-1}(x)=2 \arcsin (x-2) \\ & \text { Domain } 1 \leq x \leq 3 \\ & \text { Range }-\pi \leq y \leq \pi \\ & \text { Gradient at }(2,0) \text { is } 2 \end{array}$	M1 A1 A1 B1 B1 B1ft [6]	Attempt to invert formula or $\arcsin (y-2)=1 / 2 x$ must be $y=\ldots$ or $\mathrm{f}^{-1}(x)=\ldots$ or $[1,3]$ or $[-\pi, \pi]$ or $-\pi \leq \mathrm{f}^{-1}(x) \leq \pi$ ft their answer in (ii) (except ± 1) $1 /$ their $1 / 2$	viz solve for x in terms of y or vice-versa - one step enough condone use of a and b in inverse function, e.g. $[\arcsin (x-a)] / b$ or $\sin ^{-1}(y-2)$ condone no bracket for $1^{\text {st }} \mathrm{A} 1$ only or $2 \sin ^{-1}(x-2)$, condone $\mathrm{f}^{\prime}(x)$, must have bracket in final ans but not $1 \leq y \leq 3$ but not $-\pi \leq x \leq \pi$. Penalise $<$'s (or ' 1 to 3 ',' $-\pi$ to π ') once only or by differentiating $\arcsin (x-2)$ or implicitly
$\text { (iv) } \quad \begin{aligned} A & =\int_{0}^{\pi}\left(2+\sin \frac{1}{2} x\right) \mathrm{d} x \\ & =\left[2 x-2 \cos \frac{1}{2} x\right]_{0}^{\pi} \\ & =2 \pi-(-2) \\ & =2 \pi+2(=8.2831 \ldots) \end{aligned}$	M1 M1 A1 A1cao [4]	correct integral and limits $\left[2 x-k \cos \frac{1}{2} x\right]$ where k is positive $k=2$ answers rounding to 8.3	soi from subsequent work, condone no $\mathrm{d} x$ but not 180 Unsupported correct answers score $1^{\text {st }}$ M1 only.

