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Section A (36 marks)

1 Solve the equation |2x − 1| = |x |. [4]

2 Given that f(x) = 2 ln x and g(x) = ex, find the composite function gf(x), expressing your answer as
simply as possible. [3]

3 (i) Differentiate
ln x

x2
, simplifying your answer. [4]

(ii) Using integration by parts, show that " ln x

x2
dx = −1

x
(1 + ln x) + c. [4]

4 The height h metres of a tree after t years is modelled by the equation

h = a − be−kt,

where a, b and k are positive constants.

(i) Given that the long-term height of the tree is 10.5 metres, and the initial height is 0.5 metres,
find the values of a and b. [3]

(ii) Given also that the tree grows to a height of 6 metres in 8 years, find the value of k, giving your
answer correct to 2 decimal places. [3]

5 Given that y = x2
√

1 + 4x, show that
dy

dx
= 2x(5x + 1)

√
1 + 4x

. [5]

6 A curve is defined by the equation sin 2x + cos y = √
3.

(i) Verify that the point P (1
6
π, 1

6
π) lies on the curve. [1]

(ii) Find
dy

dx
in terms of x and y.

Hence find the gradient of the curve at the point P. [5]

7 (i) Multiply out (3n + 1)(3n − 1). [1]

(ii) Hence prove that if n is a positive integer then 32n − 1 is divisible by 8. [3]
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Section B (36 marks)

8

x

y

Fig.�8

Fig. 8 shows the curve y = f(x), where f(x) = 1

ex + e−x + 2
.

(i) Show algebraically that f(x) is an even function, and state how this property relates to the curve
y = f(x). [3]

(ii) Find f ′(x). [3]

(iii) Show that f(x) = ex

(ex + 1)2
. [2]

(iv) Hence, using the substitution u = ex + 1, or otherwise, find the exact area enclosed by the curve
y = f(x), the x-axis, and the lines x = 0 and x = 1. [5]

(v) Show that there is only one point of intersection of the curves y = f(x) and y = 1
4
ex, and find its

coordinates. [5]

[Question 9 is printed overleaf.]
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9 Fig. 9 shows the curve y = f(x). The endpoints of the curve are P (−π, 1) and Q (π, 3), and
f(x) = a + sin bx, where a and b are constants.

x

y

Fig.�9

3

2

1

!!–

y x=�f( )

P�(– ,�1)!

Q�( ,�3)!

(i) Using Fig. 9, show that a = 2 and b = 1
2
. [3]

(ii) Find the gradient of the curve y = f(x) at the point (0, 2).
Show that there is no point on the curve at which the gradient is greater than this. [5]

(iii) Find f −1(x), and state its domain and range.

Write down the gradient of y = f −1(x) at the point (2, 0). [6]

(iv) Find the area enclosed by the curve y = f(x), the x-axis, the y-axis and the line x = π. [4]
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1 2 1x x− =  

� 2x – 1 = x, x = 1 
or −(2x – 1) =  x, x = 1/3 
 
 

 
M1A1 
M1A1 
 
 
[4] 

 
www   
www, or 2x − 1 = −x must be exact for A1 
(e.g. not 0.33, but allow
condone doing both equalities in one line  
e.g. −x = 2x − 1 = x, etc 

allow unsupported answers 
or from graph  
or squaring � 3x2 −4x + 1 = 0 M1 
� (3x − 1)(x − 1) = 0   M1 factorising, formula or comp. square 
� x = 1, 1/3 A1 A1  allow M1 for sign errors in factorisation 
−1 if more than two solutions offered, but isw inequalities 

 0.3� ) 

2 gf(x) = e2ln x 

                    = 
2lne x  

2          = x  

M1 
M1 
A1 
[3] 

Forming gf(x) 
(soi) 

Doing fg: 2ln(ex) = 2x SC1  
Allow x2 (but not 2x) unsupported  

 
M1 
B1 
A1 
 
A1 
[4] 

 
quotient rule with u = ln x and v = x2 

d/dx (ln x) = 1/x soi 
correct expression (o.e.) 
 
o.e. cao, mark final answer, but must have 
divided top and bottom by x  

 
Consistent with their derivatives. udv ± vdu in the quotient rule is M0  
 
Condone lnx.2x = ln 2x2 for this A1 (provided ln x.2x is shown) 
 

e.g. 
3 3

1 2 ln x
x x

− , 

2

4

1
. ln .2d

d

x x xy x
x x

−

=   3(i) 

        
4

2 lnx x x
x

−
=  

3 32 lnx x x−          
3

1 2 ln x
x

−
=  

− −

M1 
B1 
A1 

A1 

[4] 

product rule with u = x−2 and v = ln x 
d/dx (ln x) = 1/x soi 
correct expression 
o.e. cao, mark final answer, must simplify 
the x−2.(1/x) term. 

or vice-versa 3 2d 1
2 ln ( )

d

y x x x
x x

− −

= − +  or       

 
 3 32 lnx x x− −

= − +  

2

ln
d

x x
x³

  let  (ii) u = ln  x, du/dx =  1/x 

        dv/dx = 1/x2, v = –x–1 

 1 1 1
ln . dx x

x x x
= − + ³  

 
2

1 1
ln dx x

x x
= − + ³  

 1 1
ln x c

x x
= − − +  

 1
(ln 1)x c

x
= − + + * 

 
M1 
 
 
A1 
 
 
 
A1 
 
A1 
[4] 
 

 
Integration by parts with  
u = ln x, du/dx = 1/x,  dv/dx = 1/x2, v = −x−1 

 
must be correct, condone + c  
 
 
 
condone missing c 
 
NB AG must have c shown in final answer 

 
 
Must be correct 
 
 
 
at this stage . Need to see 1/x2 
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4(i) h = a – be–kt  � a = 10.5 
 (their)a – be0 = 0.5  
 � b = 10 

B1 
M1 
A1cao 
[3] 

 
a need not be substituted 

 

(ii)  h = 10.5 – 10e–kt 
 When t = 8, h = 10.5 – 10e–8k = 6 
� 10e–8k = 4.5 
� –8k = ln 0.45 
 
� k = ln 0.45/(–8) = 0.09981… = 0.10 

 
M1 
 
M1 
 
A1 
[3] 

 
ft their a and b (even if made up) 
 
taking lns correctly on a correct re-
arrangement  - ft a, b if not eased 
cao (www)  but allow 0.1 

 
allow M1 for a – be–8k = 6 
 
allow a and b unsubstituted 
allow their 0.45 (or 4.5) to be negative  
 

5 y = x2(1 + 4x)1/2 

� 2 1/2 1/2d 1
. (1 4 ) .4 2 (1 4 )

d 2

y x x x x
x

−

= + + +  

 
       1/22 (1 4 ) ( 1 4 )x x x x−

= + + +  

       2 (5 1)

1 4

x x
x

+
=

+

* 

 
M1 
B1 
A1 

M1 
A1 
[5] 

 
product rule with u = x2, v = √(1 + 4x) 
½ (…)–1/2 soi 
correct expression 

factorising or combining fractions 

NB AG 

 
consistent with their derivatives; condone wrong index in v used 
for M1 only 
 
 
(need not factor out the 2x) must have evidence of x + 1 + 4x oe 
or 2x(5x + 1)(1 + 4x) −½  or 2x(5x + 1)/(1 + 4x) ½   

 
6(i) sin(π/3) + cos(π/6) = √3/2 + √3/2 = √3 

 
B1 
[1] 

 
must be exact, must show working  

 
Not just sin(π/3) + cos(π/6) = √3, if substituting for y and solving 
for x (or vv) must evaluate sin π/3 e.g. not arcos(√3 − sin π/3) 

 
M1 
A1 
 
 
A1cao 
 
M1dep 
A1 
 [5] 

 
Implicit differentiation 
correct expression 
 
 
 
 
substituting dep 1st M1 
www 

 
allow one error, but must have (±) sin y dy/dx. Ignore dy/dx = … 
unless pursued.  2cos 2x dx − sin y dy = 0 is M1A1 
(could differentiate wrt y, get dx/dy, etc.) 
 

2cos 2

sin

x
y

−

−

 is A0

d
2cos 2 sin 0

d

yx y
x

− =  (ii) 

� d
2cos 2 sin

d

yx y
x

=  

� d 2cos 2

d sin

y x
x y

=  
 

or 30° 
 When x = π/6, y = π/6 

� d 2cos / 3
2

d sin / 6

y
x

π

π

= =   

7 (i)   (3n + 1)(3n – 1) = (3n)2 – 1 or 32n – 1 B1 
[1] 

mark final answer 
 

or 9n − 1; penalise oks like 3 to the power n2. 
 

2

3n if it lo

   (ii)  3n is odd � 3n +1 and 3n – 1 both even 
 As consecutive even nos, one must be  
         divisible by 4, so product is divisible by 8. 
 

M1 
M1 
A1 
[3] 

3n is odd 
� 3n +1 and 3n – 1 both even 
completion  
 

Induction: If true for n, 32n − 1 = 8k, so 32n  = 1 + 8k,  M1 
32(n+1)

− 1 = 9×(8k + 1) − 1 = 72k + 8 = 8(9k + 1) so div by 8. A1 
When n = 1, 32 − 1 = 8 div by 8, true  A1(or similar with 9n) 
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( )

1
f( )

e e 2x xx
− − −

− =

+ +

 8(i)  

  = f(x) , [� f is even *] 
 Symmetrical about Oy 

 
M1 
A1 
B1 
 [3] 

 
substituting −x for x in f(x) 
 
condone ‘reflection in y-axis’ 

 

Can imply that e−(−x)  = ex from 1
f( )

e e 2x xx
−

− =

+ +

 

Must mention axis 

 (ii)  2f ( ) (e e 2) (e e )x x x xx − − −
′ = − + + −  

or                =  
2

(e e 2).0 (e e )

(e e 2)

x x x x

x x

− −

−

+ + − −

+ +

 

B1 
M1 
 
 
 
A1 
[3] 

d/dx (ex) = ex and d/dx(e–x) = –e–x soi 
chain or quotient rule 
condone missing bracket on top  if correct 
thereafter 
 
o.e.  mark final answer 
 

.  

If differentiating 
2

e

(e 1)

x

x
+

 withhold A1 (unless result in (iii) proved here) 

 

e.g.
2

1
(e e )

(e e 2)
x x

x x
−

−
× −

+ +

 
          

2

(e e )

(e e 2)

x x

x x

−

−

−
=

+ +

 

2

e
f( )

e 1 2e

x

x xx =

+ +

 

 

 
M1 
 
A1 
[2] 

 
× top and bottom by ex (correctly)  

condone 
2

ex for M1 but not A1 
NB AG 

or 
2 2

e e

(e 1) e 2e 1

x x

x x x=

+ + +

 M1,  = 1

e e 2x x−

+ +

 A1   

condone no e2x = (ex)2 ,for both M1 and A1 

(iii)  

       
2

e

(e 1)

x

x=

+

*

(iv) 1

20

e
d

(e 1)

x

xA x=

+
³  

x let u = e  + 1, du = ex dx 
 when x = 0, u = 2; when x = 1, u = e + 1 

� 1

22

1
d

e
A u

u
+

= ³  

     
1

2

1
e

u

+

ª º
= −« »¬ ¼

 

 1 1

1 e 2
= − +

+

1 1

2 1 e
= −

+

  

 
B1 
 
M1 
 
A1 
 
M1 
 
 
A1cao 
 
[5] 

 
correct integral and limits 

2

1
(d )u

u³
 

  1

u
ª º
−« »¬ ¼

 

substituting correct limits (dep 1st M1 and 
integration) 
 
o.e. mark final answer. Must be exact 
Don’t allow e1. 

condone no dx, must use f(x) = 
2

e

(e 1)

x

x
+

. Limits may be implied by 

subsequent work. If 0.231.. unsupported, allow 1st B1 only 
 

or by inspection 
1x

k
e
ª º
« »

+¬ ¼
 M1 1

1xe
ª º
−« »

+¬ ¼
A1 

upper−lower; 2 and 1+e (or 3.7..)for u, or 0 and 1 for x if substituted back 
(correctly) 
 

e.g. e 1

2(1 e)

−

+

. Can isw 0.231, which may be used as evidence of M1. 

Can isw numerical ans (e.g. 0.231)  but not algebraic errors 

(v)   Curves intersect when   1
f( ) e

4
xx =  

�  (ex + 1)2 = 4 
� ex = 1 or −3 
 so as ex > 0, only one solution 
 ex = 1  � x = 0 
 when x = 0, y = ¼  

 
M1 
 
M1 
 
A1 
B1 
B1 
[5] 

 
soi   
 
or equivalent quadratic – must be correct 
 
getting ex = 1 and discounting other soln 

x = 0 www (for this value) 
y = ¼ www (for the x value) 

2

e 1 1
e

(e 1) 2 4

x
x

x x xor
e e−

=

+ + +

 

With e2x or (ex)2 , condone 
2

ex , e0 

 
www e.g. ex = −1 [or  ex + 1 = −2] not possible 
www unless verified 
Do not allow unsupported. A sketch is not sufficient 

7 
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8 

 

9(i)     When x = 0, f(x) = a = 2* 
 
 When x = π, f(π) = 2 + sin bπ = 3 
� sin bπ = 1 
� bπ = ½ π, so b = ½ * 
or   1 = a + sin (−πb) (= a − sin πb) 
      3 = a + sin (πb)    
�  2 = 2 sin πb, sin πb = 1, πb = π/2, b = ½   
�  3 = a + 1 or 1 = a − 1 � a = 2 (oe for b) 
 
 

B1 
 
M1 
 
A1 
 
 
 
 
 
[3] 

NB AG ‘a is the y-intercept’ not enough 
but allow verification (2+sin 0 = 2) 
or when x = −π, f(−π) = 2 + sin (−bπ) = 1 
� sin(−bπ) = −1 condone using degrees 
� −bπ = − ½ π, b = ½  NB AG 
 
M1 for both points substituted 
A1 solving for b or a 
A1 substituting to get a (or b) 

or equiv transformation arguments :  
e.g. ‘curve is shifted up 2 so a = 2’.  
 
e.g. period of sine curve is 4π, or stretched by sf. 2 in x-direction  
(not squeezed or squashed by ½ ) 
� b = ½  If verified allow M1A0 
If y = 2 + sin ½ x verified at two points, SC2 
 
A sequence of sketches starting from y = sin x showing clearly the 
translation and the stretch (in either order) can earn full marks 

(ii)  f ′(x) = ½ cos ½ x 
 
� f ′(0) = ½ 
 Maximum value of cos ½ x is 1 
� max value of gradient is ½  

M1 
A1 
A1 
M1 
A1 
[5] 
 

±k cos ½ x 
cao 
www 
or fƎ(x) = − ¼ sin ½ x  
fƎ(x) = 0 � x = 0, so max val of f ′(x) is  ½  

 
 
 
 
 

(iii)   y = 2 + sin ½ x x ↔ y 
 x = 2 + sin ½ y 
� x – 2 = sin ½ y 
� arcsin(x – 2) = ½ y 
� y = f –1(x) = 2arcsin(x – 2) 
 Domain 1 ≤ x ≤ 3 
 Range –π ≤ y ≤ π 
 Gradient at (2, 0) is 2 

M1 
 
 
A1 
A1 
B1 
B1 
B1ft 
[6] 

Attempt to invert formula 
 
 
or arcsin(y – 2) = ½ x 
must be y = … or f−1(x) = … 
or [1, 3]  
or [−π, π] or –π ≤ f −1(x) ≤ π 
ft their answer in (ii) (except ±1) 1/their ½ 
 

viz solve for x in terms of y or vice-versa – one step enough 
condone use of a and b in inverse function, e.g. [arcsin(x – a)]/b 
 
or sin−1(y − 2) condone no bracket for 1st A1 only 
or 2sin−1(x – 2), condone f ′(x),  must have bracket in final ans 
but not 1 ≤ y ≤ 3 
but not –π ≤  x ≤ π. Penalise <’s (or ‘1 to 3’,’−π to π’) once only  
or by differentiating arcsin(x – 2) or implicitly 

(iv) 
0

1
(2 sin ) d

2
A x x

π

= +³  

    
0

1
2 2cos

2
x x

π

ª º
= −« »¬ ¼

 

    = 2π – (–2) 
    = 2π + 2 (= 8.2831…) 

M1 
 
M1 
 
A1 
 
A1cao 
[4] 

correct integral and limits 
1

2 cos
2

x k xª º
−« »¬ ¼

 where k is positive 

k = 2 
 
answers rounding to 8.3 

soi from subsequent work, condone no dx but not 180 
 
 
 
 
Unsupported correct answers score 1st M1 only. 
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