

ADVANCED GCE MATHEMATICS (MEI)

4753/01

Methods for Advanced Mathematics (C3)

QUESTION PAPER

Candidates answer on the printed answer book.

OCR supplied materials:

- Printed answer book 4753/01
- MEI Examination Formulae and Tables (MF2)

Other materials required:

· Scientific or graphical calculator

Monday 20 June 2011 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the printed answer book and the question paper.

- The question paper will be found in the centre of the printed answer book.
- Write your name, centre number and candidate number in the spaces provided on the printed answer book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the printed answer book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the printed answer book and the question paper.

- The number of marks is given in brackets [] at the end of each question or part question on the question paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- The printed answer book consists of **16** pages. The question paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

• Do not send this question paper for marking; it should be retained in the centre or destroyed.

Section A (36 marks)

- 1 Solve the equation |2x-1| = |x|. [4]
- Given that $f(x) = 2 \ln x$ and $g(x) = e^x$, find the composite function gf(x), expressing your answer as simply as possible. [3]
- 3 (i) Differentiate $\frac{\ln x}{x^2}$, simplifying your answer. [4]

(ii) Using integration by parts, show that
$$\int \frac{\ln x}{x^2} dx = -\frac{1}{x} (1 + \ln x) + c.$$
 [4]

4 The height h metres of a tree after t years is modelled by the equation

$$h = a - be^{-kt}$$
.

where a, b and k are positive constants.

- (i) Given that the long-term height of the tree is 10.5 metres, and the initial height is 0.5 metres, find the values of a and b.
- (ii) Given also that the tree grows to a height of 6 metres in 8 years, find the value of k, giving your answer correct to 2 decimal places. [3]

5 Given that
$$y = x^2 \sqrt{1 + 4x}$$
, show that $\frac{dy}{dx} = \frac{2x(5x+1)}{\sqrt{1+4x}}$. [5]

- 6 A curve is defined by the equation $\sin 2x + \cos y = \sqrt{3}$.
 - (i) Verify that the point $P(\frac{1}{6}\pi, \frac{1}{6}\pi)$ lies on the curve. [1]
 - (ii) Find $\frac{dy}{dx}$ in terms of x and y.

Hence find the gradient of the curve at the point P. [5]

- 7 (i) Multiply out $(3^n + 1)(3^n 1)$. [1]
 - (ii) Hence prove that if n is a positive integer then $3^{2n} 1$ is divisible by 8. [3]

© OCR 2011 4753/01 Jun11

Section B (36 marks)

8

Fig. 8

Fig. 8 shows the curve y = f(x), where $f(x) = \frac{1}{e^x + e^{-x} + 2}$.

- (i) Show algebraically that f(x) is an even function, and state how this property relates to the curve y = f(x).
- (ii) Find f'(x). [3]

(iii) Show that
$$f(x) = \frac{e^x}{(e^x + 1)^2}$$
. [2]

- (iv) Hence, using the substitution $u = e^x + 1$, or otherwise, find the exact area enclosed by the curve y = f(x), the x-axis, and the lines x = 0 and x = 1. [5]
- (v) Show that there is only one point of intersection of the curves y = f(x) and $y = \frac{1}{4}e^x$, and find its coordinates. [5]

[Question 9 is printed overleaf.]

9 Fig. 9 shows the curve y = f(x). The endpoints of the curve are $P(-\pi, 1)$ and $Q(\pi, 3)$, and $f(x) = a + \sin bx$, where a and b are constants.

Fig. 9

[3]

[5]

- (i) Using Fig. 9, show that a = 2 and $b = \frac{1}{2}$.
- (ii) Find the gradient of the curve y = f(x) at the point (0, 2).

Show that there is no point on the curve at which the gradient is greater than this.

(iii) Find $f^{-1}(x)$, and state its domain and range.

Write down the gradient of $y = f^{-1}(x)$ at the point (2, 0).

(iv) Find the area enclosed by the curve y = f(x), the x-axis, the y-axis and the line $x = \pi$. [4]

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2011 4753/01 Jun11

1 ⇒ or 2	$ 2x-1 = x $ $2x - 1 = x, x = 1$ $-(2x - 1) = x, x = 1/3$ $gf(x) = e^{2\ln x}$ $= e^{\ln x^2}$ $= x^2$	M1A1 M1A1 [4] M1 M1 A1 [3]	www www, or $2x - 1 = -x$ must be exact for A1 (e.g. not 0.33, but allow 0.3) condone doing both equalities in one line e.g. $-x = 2x - 1 = x$, etc Forming gf(x) (soi)	allow unsupported answers or from graph or squaring $\Rightarrow 3x^2 - 4x + 1 = 0 \text{ M1}$ $\Rightarrow (3x - 1)(x - 1) = 0 \text{ M1 factorising, formula or comp. square}$ $\Rightarrow x = 1, 1/3 \text{ A1 A1 allow M1 for sign errors in factorisation}$ $-1 \text{ if more than two solutions offered, but isw inequalities}$ Doing fg: $2\ln(e^x) = 2x \text{ SC1}$ Allow x^2 (but not $2x$) unsupported
3(i)	$\frac{dy}{dx} = \frac{x^2 \cdot \frac{1}{x} - \ln x \cdot 2x}{x^4}$ $= \frac{x - 2x \ln x}{x^4}$ $= \frac{1 - 2 \ln x}{x^3}$	M1 B1 A1 A1 [4]	quotient rule with $u = \ln x$ and $v = x^2$ d/d x (ln x) = 1/ x soi correct expression (o.e.) o.e. cao, mark final answer, but must have divided top and bottom by x	Consistent with their derivatives. $udv \pm vdu$ in the quotient rule is M0 Condone $\ln x.2x = \ln 2x^2$ for this A1 (provided $\ln x.2x$ is shown) e.g. $\frac{1}{x^3} - \frac{2 \ln x}{x^3}$, $x^{-3} - 2x^{-3} \ln x$
or	$\frac{dy}{dx} = -2x^{-3} \ln x + x^{-2} (\frac{1}{x})$ $= -2x^{-3} \ln x + x^{-3}$	M1 B1 A1 A1 [4]	product rule with $u = x^{-2}$ and $v = \ln x$ d/dx ($\ln x$) = 1/x soi correct expression o.e. cao, mark final answer, must simplify the x^{-2} .(1/x) term.	or vice-versa
(ii)	$\int \frac{\ln x}{x^2} dx \text{let } u = \ln x, du/dx = 1/x$ $dv/dx = 1/x^2, v = -x^{-1}$ $= -\frac{1}{x} \ln x + \int \frac{1}{x} \cdot \frac{1}{x} dx$ $= -\frac{1}{x} \ln x + \int \frac{1}{x^2} dx$	M1	Integration by parts with $u = \ln x$, $du/dx = 1/x$, $dv/dx = 1/x^2$, $v = -x^{-1}$ must be correct, condone $+ c$	Must be correct at this stage . Need to see $1/x^2$
	$= -\frac{1}{x} \ln x - \frac{1}{x} + c$ $= -\frac{1}{x} (\ln x + 1) + c^*$	A1 A1 [4]	condone missing c NB \mathbf{AG} must have c shown in final answer	

	lt	D.1	T	T
4 (i)	$h = a - be^{-kt} \Rightarrow a = 10.5$	B1		
	$(\text{their})a - be^0 = 0.5$	M1	a need not be substituted	
	$\Rightarrow b = 10$	Alcao		
	T.	[3]		
(ii)	$h = 10.5 - 10e^{-kt}$			
	When $t = 8$, $h = 10.5 - 10e^{-8k} = 6$	M1	ft their a and b (even if made up)	allow M1 for $a - be^{-8k} = 6$
\Rightarrow	$10e^{-8k} = 4.5$			
\Rightarrow	$-8k = \ln 0.45$	M1	taking lns correctly on a correct re-	allow a and b unsubstituted
			arrangement - ft a, b if not eased	allow their 0.45 (or 4.5) to be negative
\Rightarrow	$k = \ln 0.45/(-8) = 0.09981 = 0.10$	A1	cao (www) but allow 0.1	\
	K III 0.43/(-0) 0.07/01 0.10	[3]		
5	$y = x^2(1+4x)^{1/2}$	[-]		
		M1	product rule with $u = x^2$, $v = \sqrt{1 + 4x}$	consistent with their derivatives; condone wrong index in v used
\Rightarrow	$\frac{dy}{dx} = x^2 \cdot \frac{1}{2} (1+4x)^{-1/2} \cdot 4 + 2x(1+4x)^{1/2}$	B1	$\frac{1}{2} \left(\dots \right)^{-1/2} \text{soi}$	for M1 only
	$\mathbf{d} x = 2$	A1	correct expression	101 WIT Only
	1/2		correct expression	
	$=2x(1+4x)^{-1/2}(x+1+4x)$	M1	factorising or combining fractions	(need not factor out the 2x) must have evidence of $x + 1 + 4x$ oe
	2x(5x+1) *	A1	NB AG	
	$=\frac{2x(5x+1)}{\sqrt{1+4x}}$ *	[5]		or $2x(5x+1)(1+4x)^{-\frac{1}{2}}$ or $2x(5x+1)/(1+4x)^{\frac{1}{2}}$
	VI I TA			
	: (-12) + (-16) + (-12)2 + (-12)2	D1	annot be and to annot always and in a	N () () () () () () () () () (
6(i)	$\sin(\pi/3) + \cos(\pi/6) = \sqrt{3}/2 + \sqrt{3}/2 = \sqrt{3}$	B1	must be exact, must show working	Not just $\sin(\pi/3) + \cos(\pi/6) = \sqrt{3}$, if substituting for y and solving
		[1]		for x (or vv) must evaluate $\sin \pi/3$ e.g. not $\arccos(\sqrt{3} - \sin \pi/3)$
(ii)	$2\cos 2x - \sin y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$			
, ,	$\frac{2\cos 2x}{\mathrm{d}x} = 0$	M1	Implicit differentiation	allow one error, but must have $(\pm) \sin y dy/dx$. Ignore $dy/dx =$
\Rightarrow	$2\cos 2x = \sin y \frac{\mathrm{d}y}{\mathrm{d}x}$	A1	correct expression	unless pursued. $2\cos 2x dx - \sin y dy = 0$ is M1A1
	$2\cos 2x = \sin y \frac{1}{dx}$			(could differentiate wrt y , get dx/dy , etc.)
\Rightarrow	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2x}{\sin y}$	A1cao		$-2\cos 2x$ is A0
	•			$-\sin y$ is A0
	When $x = \pi/6$, $y = \pi/6$	M1dep	substituting dep 1 st M1	
\Rightarrow	$\frac{\mathrm{d}y}{2} - \frac{2\cos\pi/3}{2} - 2$	A1	www	or 30
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos\pi/3}{\sin\pi/6} = 2$	[5]		
7 (i)	$(3^n + 1)(3^n - 1) = (3^n)^2 - 1$ or $3^{2n} - 1$	B1	mark final answer	2^{n}
, (1)		[1]		or $9^n - 1$; penalise 3^{n^2} if it looks like 3 to the power n^2 .
(ii)	3^n is odd $\Rightarrow 3^n + 1$ and $3^n - 1$ both even	M1	3^n is odd	Induction: If true for n , $3^{2n} - 1 = 8k$, so $3^{2n} = 1 + 8k$, M1
	As consecutive even nos, one must be	M1	\Rightarrow 3 ⁿ +1 and 3 ⁿ – 1 both even	$3^{2(n+1)} - 1 = 9 \times (8k+1) - 1 = 72k + 8 = 8(9k+1)$ so div by 8. A1
	divisible by 4, so product is divisible by 8.	A1	completion	When $n = 1$, $3^2 - 1 = 8$ div by 8, true A1(or similar with 9^n)
		1	1 F=	1 THOU I 1, 5 I O GIV OY O, HIGO TITOU SHILLING WILL S I
	<i>y</i> , 1	[3]		

		1	T	
8(i)	$f(-x) = \frac{1}{e^{-x} + e^{-(-x)} + 2}$	M1	substituting $-x$ for x in $f(x)$	Con imply that $a^{-(-x)} = a^x$ from $a^x = 1$
	$= f(x), [\Rightarrow f \text{ is even *}]$	A1	()	Can imply that $e^{-(-x)} = e^x$ from $f(-x) = \frac{1}{e^{-x} + e^x + 2}$
	Symmetrical about Oy	B1	condone 'reflection in y-axis'	Must mention axis
	Symmetrical about Gy	[3]		Nust include axis
(ii)	$f'(x) = -(e^x + e^{-x} + 2)^{-2}(e^x - e^{-x})$	B1	$d/dx (e^x) = e^x \text{ and } d/dx (e^{-x}) = -e^{-x} \text{ soi}$	
	$(e^x + e^{-x} + 2) 0 - (e^x - e^{-x})$	M1	chain or quotient rule	If differentiating ex withhold A1 (unless result in (iii) proved here)
or	$= \frac{(e^{x}+e^{-x}+2).0-(e^{x}-e^{-x})}{(e^{x}+e^{-x}+2)^{2}}$		condone missing bracket on top if correct	If differentiating $\frac{e^x}{(e^x+1)^2}$ withhold A1 (unless result in (iii) proved here)
			thereafter	(
	$=\frac{(e^{-x}-e^x)}{(e^x+e^{-x}+2)^2}$	A 1		a g 1 (-r r)
	$(e^{x} + e^{-x} + 2)^{2}$	A1	o.e. mark final answer	$e.g. \frac{1}{(e^x + e^{-x} + 2)^2} \times (e^{-x} - e^x)$
	x	[3]		
(iii)	$f(x) = \frac{e^x}{e^{2x} + 1 + 2e^x}$	M1	\times top and bottom by e^x (correctly)	or $\frac{e^x}{(e^x+1)^2} = \frac{e^x}{e^{2x}+2e^x+1}$ M1, $=\frac{1}{e^x+e^{-x}+2}$ A1
		IVII	condone e^{x^2} for M1 but not A1	
	$=\frac{e^x}{(e^x+1)^2}*$	A1	NB AG	condone no $e^{2x} = (e^x)^2$, for both M1 and A1
	$(e^x+1)^2$	[2]	ND AG	
(iv)	$\int_{a}^{1} e^{x}$			and one no dr. must use $f(r) = e^{r}$ Limits may be implied by
(IV)	$A = \int_0^1 \frac{e^x}{(e^x + 1)^2} dx$	B1	correct integral and limits	condone no dx, must use $f(x) = \frac{e^x}{(e^x + 1)^2}$. Limits may be implied by
	$let u = e^x + 1, du = e^x dx$		$\int \frac{1}{u^2} (\mathrm{d}u)$	subsequent work. If 0.231 unsupported, allow 1st B1 only
	when $x = 0$, $u = 2$; when $x = 1$, $u = e + 1$	M1	$\int u^2 (u^3)$	The state of the s
\Rightarrow		A1	$\left[-\frac{1}{u} \right]$	$\begin{bmatrix} ar by increasion & k \end{bmatrix} M1 \begin{bmatrix} 1 \end{bmatrix} A1$
_	$A = \int_{2}^{1+e} \frac{1}{u^2} \mathrm{d}u$	AI		or by inspection $\left[\frac{k}{e^x+1}\right]$ M1 $\left[-\frac{1}{e^x+1}\right]$ A1
	Γ 1 ¬¹+e	M1	substituting correct limits (dep 1 st M1 and	upper-lower; 2 and 1+e (or 3.7) for u , or 0 and 1 for x if substituted back
	$=\left[-\frac{1}{u}\right]_{2}^{1+e}$	1411	integration)	(correctly)
			mogration)	
	$=-\frac{1}{1+e}+\frac{1}{2}=\frac{1}{2}-\frac{1}{1+e}$	A1cao	o.e. mark final answer. Must be exact	a g e-1 Can jaw 0.221 which may be used as evidence of M1
	1+e 2 2 1+e		Don't allow e ¹ .	e.g. $\frac{e-1}{2(1+e)}$. Can isw 0.231, which may be used as evidence of M1.
		[5]		Can isw numerical ans (e.g. 0.231) but not algebraic errors
(-)	2			
(v) (Curves intersect when $f(x) = \frac{1}{4}e^x$	M1	soi	$\frac{e^x}{(e^x+1)^2}$ or $\frac{1}{e^x+e^{-x}+2} = \frac{1}{4}e^x$
	4			
	$(e^x + 1)^2 = 4$	M1	or equivalent quadratic – must be correct	With e^{2x} or $(e^x)^2$, condone e^{x^2} , e^0
\Rightarrow	$e^x = 1 \text{ or } -3$			
	so as $e^x > 0$, only one solution	A1	getting $e^x = 1$ and discounting other sol ⁿ	www e.g. $e^x = -1$ [or $e^x + 1 = -2$] not possible
	$e^x = 1 \implies x = 0$	B1	x = 0 www (for this value)	www unless verified
	when $x = 0$, $y = \frac{1}{4}$	B1	$y = \frac{1}{4}$ www (for the x value)	Do not allow unsupported. A sketch is not sufficient
		[5]		

9(i) When $x = 0$, $f(x) = a = 2*$ When $x = \pi$, $f(\pi) = 2 + \sin b\pi = 3$ $\Rightarrow \sin b\pi = 1$ $\Rightarrow b\pi = \frac{1}{2}\pi$, so $b = \frac{1}{2}*$ or $1 = a + \sin(-\pi b) (= a - \sin \pi b)$ $3 = a + \sin(\pi b)$ $\Rightarrow 2 = 2 \sin \pi b$, $\sin \pi b = 1$, $\pi b = \frac{\pi}{2}$, $b = \frac{1}{2}$ $\Rightarrow 3 = a + 1$ or $1 = a - 1 \Rightarrow a = 2$ (oe for b)	B1 M1 A1	NB AG ' <i>a</i> is the <i>y</i> -intercept' not enough but allow verification $(2+\sin 0 = 2)$ or when $x = -\pi$, $f(-\pi) = 2 + \sin (-b\pi) = 1$ $\Rightarrow \sin(-b\pi) = -1$ condone using degrees $\Rightarrow -b\pi = -\frac{1}{2}\pi$, $b = \frac{1}{2}$ NB AG M1 for both points substituted A1 solving for <i>b</i> or <i>a</i> A1 substituting to get <i>a</i> (or <i>b</i>)	or equiv transformation arguments: e.g. 'curve is shifted up 2 so $a = 2$ '. e.g. period of sine curve is 4π , or stretched by sf. 2 in <i>x</i> -direction (not squeezed or squashed by $\frac{1}{2}$) $\Rightarrow b = \frac{1}{2} \text{ If verified allow M1A0}$ If $y = 2 + \sin \frac{1}{2} x$ verified at two points, SC2 A sequence of sketches starting from $y = \sin x$ showing clearly the translation and the stretch (in either order) can earn full marks
(ii) $f'(x) = \frac{1}{2} \cos \frac{1}{2} x$ $\Rightarrow f'(0) = \frac{1}{2}$ Maximum value of $\cos \frac{1}{2} x$ is 1 $\Rightarrow \text{max value of gradient is } \frac{1}{2}$	M1 A1 A1 M1 A1 [5]		
(iii) $y = 2 + \sin \frac{1}{2}x \ x \leftrightarrow y$ $x = 2 + \sin \frac{1}{2}y$ $\Rightarrow x - 2 = \sin \frac{1}{2}y$ $\Rightarrow \arcsin(x - 2) = \frac{1}{2}y$ $\Rightarrow y = f^{-1}(x) = 2\arcsin(x - 2)$ Domain $1 \le x \le 3$ Range $-\pi \le y \le \pi$ Gradient at $(2, 0)$ is 2	M1 A1 A1 B1 B1 B1ft [6]	Attempt to invert formula $ \text{or } \arcsin(y-2) = \frac{1}{2} x $ must be $y = \dots$ or $f^{-1}(x) = \dots$ or $[1, 3]$ or $[-\pi, \pi]$ or $-\pi \le f^{-1}(x) \le \pi$ ft their answer in (ii) (except ± 1) 1 /their $\frac{1}{2}$	viz solve for x in terms of y or vice-versa – one step enough condone use of a and b in inverse function, e.g. $[arcsin(x-a)]/b$ or $sin^{-1}(y-2)$ condone no bracket for 1^{st} A1 only or $2sin^{-1}(x-2)$, condone f'(x), must have bracket in final ans but not $1 \le y \le 3$ but not $-\pi \le x \le \pi$. Penalise <'s (or '1 to 3','- π to π ') once only or by differentiating $arcsin(x-2)$ or implicitly
(iv) $A = \int_0^{\pi} (2 + \sin \frac{1}{2} x) dx$ $= \left[2x - 2\cos \frac{1}{2} x \right]_0^{\pi}$ $= 2\pi - (-2)$ $= 2\pi + 2 (= 8.2831)$	M1 M1 A1 A1cao [4]	correct integral and limits $\left[2x - k\cos\frac{1}{2}x\right]$ where k is positive $k = 2$ answers rounding to 8.3	soi from subsequent work, condone no d x but not 180 Unsupported correct answers score 1 st M1 only.