Mathematics (MEI)

Advanced GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Section A

$\begin{aligned} & \text { 4(i) } \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 2 \\ 3 \\ -5 \end{array}\right), \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l} 5 \\ 0 \\ 2 \end{array}\right) \\ & \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l} 2 \\ 3 \\ -5 \end{array}\right) \cdot\left(\begin{array}{l} 5 \\ 0 \\ 2 \end{array}\right)=2 \times 5+3 \times 0+(-5) \times 2=0 \end{aligned}$ $\Rightarrow \quad A B$ is perpendicular to $B C$.	B1 B1 M1E1 [4]	
$\text { (ii) } \quad \begin{aligned} & \mathrm{AB}=\sqrt{ }\left(2^{2}+3^{2}+(-5)^{2}\right)=\sqrt{ } 38 \\ & \\ & \mathrm{BC}=\sqrt{ }\left(5^{2}+0^{2}+2^{2}\right)=\sqrt{ } 29 \\ & \\ & \text { Area }=1 / 2 \times \sqrt{ } 38 \times \sqrt{ } 29=1 / 2 \sqrt{ } 1102 \text { or } 16.6 \text { units }^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	complete method ft lengths of both AB, BC oe www
$5 \begin{aligned} \text { LHS } & =\frac{2 \sin \theta \cos \theta}{1+2 \cos ^{2} \theta-1} \\ & =\frac{2 \sin \theta \cos \theta}{2 \cos ^{2} \theta} \\ & =\frac{\sin \theta}{\cos \theta}=\tan \theta=\text { RHS } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { [3] } \end{aligned}$	one correct double angle formula used cancelling $\cos \theta$'s
6(i) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}-8-3 \lambda \\ -2 \\ 6+\lambda\end{array}\right)$ Substituting into plane equation: $\begin{aligned} & 2(-8-3 \lambda)-3(-2)+6+\lambda=11 \\ \Rightarrow & -16-6 \lambda+6+6+\lambda=11 \\ \Rightarrow \quad & 5 \lambda=-15, \lambda=-3 \end{aligned}$ So point of intersection is $(1,-2,3)$	B1 M1 A1 A1ft [4]	
$\begin{aligned} & \text { (ii) Angle between }\left(\begin{array}{l} 2 \\ -3 \\ 1 \end{array}\right) \text { and }\left(\begin{array}{l} -3 \\ 0 \\ 1 \end{array}\right) \\ & \cos \theta=\frac{2 \times(-3)+(-3) \times 0+1 \times 1}{\sqrt{14} \sqrt{10}} \\ & \Rightarrow \quad \text { acute angle }=65^{\circ} \end{aligned}$	B1 M1 A1 A1 [4]	allow M1 for a complete method only for any vectors

Section B

7(i) When $t=0, v=5\left(1-\mathrm{e}^{0}\right)=0$ As $t \rightarrow \infty, \mathrm{e}^{-2 t} \rightarrow 0, \Rightarrow v \rightarrow 5$ When $t=0.5, v=3.16 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	
$\begin{aligned} \text { (ii) } & \frac{\mathrm{d} v}{\mathrm{~d} t}=5 \times(-2) \mathrm{e}^{-2 t}=10 \mathrm{e}^{-2 t} \\ & 10-2 v=10-10\left(1-\mathrm{e}^{-2 t}\right)=10 \mathrm{e}^{-2 t} \\ \Rightarrow \quad & \frac{\mathrm{~d} v}{\mathrm{~d} t}=10-2 v \end{aligned}$	B1 M1 E1 [3]	
$\begin{aligned} & \text { (iii) } \frac{\mathrm{d} v}{\mathrm{~d} t}=10-0.4 v^{2} \\ & \Rightarrow \quad \frac{10}{100-4 v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=1 \\ & \Rightarrow \quad \frac{10}{25-v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=4 \\ & \Rightarrow \quad \frac{10}{(5-v)(5+v)} \frac{\mathrm{d} v}{\mathrm{~d} t}=4^{*} \\ & \\ & \quad \frac{10}{(5-v)(5+v)}=\frac{A}{5-v}+\frac{B}{5+v} \\ & \Rightarrow \quad 10=A(5+v)+B(5-v) \\ & v=5 \Rightarrow 10=10 A \Rightarrow A=1 \\ & v=-5 \Rightarrow 10=10 B \Rightarrow B=1 \\ & \Rightarrow \quad \frac{10}{(5-v)(5+v)}=\frac{1}{5-v}+\frac{1}{5+v} \\ & \Rightarrow \quad \int\left(\frac{1}{5-v}+\frac{1}{5+v}\right) \mathrm{d} v=4 \int \mathrm{~d} t \\ & \Rightarrow \quad \ln (5+v)-\ln (5-v)=4 t+c \end{aligned}$ $\text { when } t=0, v=0, \Rightarrow 0=4 \times 0+c \Rightarrow c=0$ $\Rightarrow \quad \ln \left(\frac{5+v}{5-v}\right)=4 t$ $\Rightarrow \quad t=\frac{1}{4} \ln \left(\frac{5+v}{5-v}\right) *$	M1 E1 M1 A1 M1 A1 A1 E1 [8]	for both $A=1, B=1$ separating variables correctly and indicating integration ft their A, B, condone absence of c ft finding c from an expression of correct form
(iv) When $t \rightarrow \infty, \mathrm{e}^{-4 t} \rightarrow 0, \Rightarrow v \rightarrow 5 / 1=5$ when $t=0.5, t=\frac{5\left(1-\mathrm{e}^{-2}\right)}{1+\mathrm{e}^{-2}}=3.8 \mathrm{~m} \mathrm{~s}^{-1}$	E1 M1A1 [3]	
(v) The first model	$\begin{aligned} & \text { E1 } \\ & \text { [1] } \end{aligned}$	Www

	$\mathrm{AC}=5 \sec \alpha$	B1	
$\begin{aligned} & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{aligned} \mathrm{CF} & =\mathrm{AC} \tan \beta \\ & =5 \sec \alpha \tan \beta \\ \mathrm{GF} & =2 \mathrm{CF}=10 \sec \alpha \tan \beta^{*} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & {[3]} \end{aligned}$	ACtan β
(ii)	$\begin{aligned} & \mathrm{CE}=\mathrm{BE}-\mathrm{BC} \\ &=5 \tan (\alpha+\beta)-5 \tan \alpha \\ &=5(\tan (\alpha+\beta)-\tan \alpha) \\ &=5\left(\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}-\tan \alpha\right) \\ & \quad=5\left(\frac{\tan \alpha+\tan \beta-\tan \alpha+\tan ^{2} \alpha \tan \beta}{1-\tan \alpha \tan \beta}\right) \\ &= \frac{5\left(1+\tan ^{2} \alpha\right) \tan \beta}{1-\tan \alpha \tan \beta} \\ &= \frac{5 \tan \beta \sec ^{2} \alpha}{1-\tan \alpha \tan \beta} * \end{aligned}$	E1 M1 M1 DM1 E1 [5]	compound angle formula combining fractions $\sec ^{2}=1+\tan ^{2}$
\Rightarrow \Rightarrow	$\begin{aligned} & \sec ^{2} 45^{\circ}=2, \tan 45^{\circ}=1 \\ & \mathrm{CE}=\frac{5 t \times 2}{1-t}=\frac{10 t}{1-t} \\ & \mathrm{CD}=\frac{10 t}{1+t} \\ & \mathrm{DE}=\frac{10 t}{1-t}+\frac{10 t}{1+t}=10 t\left(\frac{1}{1-t}+\frac{1}{1+t}\right) \\ &=10 t\left(\frac{1+t+1-t}{(1-t)(1+t)}\right)=\frac{20 t}{1-t^{2}} * \end{aligned}$	B1 M1 A1 M1 E1 [5]	used substitution for both in CE or CD oe for both adding their CE and CD
(iv)	$\begin{gathered} \cos 45^{\circ}=1 / \sqrt{ } 2 \Rightarrow \sec \alpha=\sqrt{ } 2 \\ \mathrm{GF}=10 \sqrt{ } 2 \tan \beta=10 \sqrt{ } 2 t \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & {[2]} \end{aligned}$	
$\begin{gathered} (\mathrm{v}) \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{gathered}$	$\begin{aligned} & \mathrm{DE}=2 \mathrm{GF} \\ & \frac{20 t}{1-t^{2}}=20 \sqrt{2} t \\ & 1-t^{2}=1 / \sqrt{ } 2 \Rightarrow t^{2}=1-1 / \sqrt{ } 2 * \\ & t=0.541 \\ & \beta=28.4^{\circ} \end{aligned}$	E1 M1 A1 [3]	invtan t

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

