MEI Core 1 Surds Questions Jan 05 - May 09 1 Simplify $(3+\sqrt{2})(3-\sqrt{2})$. Express $$\frac{1+\sqrt{2}}{3-\sqrt{2}}$$ in the form $a+b\sqrt{2}$, where a and b are rational. [5] 2 (i) Simplify $$\sqrt{24} + \sqrt{6}$$. [2] (ii) Express $$\frac{36}{5-\sqrt{7}}$$ in the form $a+b\sqrt{7}$, where a and b are integers. [3] 3 (i) Simplify $5\sqrt{8} + 4\sqrt{50}$. Express your answer in the form $a\sqrt{b}$, where a and b are integers and b is as small as possible. [2] (ii) Express $$\frac{\sqrt{3}}{6-\sqrt{3}}$$ in the form $p+q\sqrt{3}$, where p and q are rational. [3] 4 (i) Simplify $$6\sqrt{2} \times 5\sqrt{3} - \sqrt{24}$$. [2] (ii) Express $$(2-3\sqrt{5})^2$$ in the form $a+b\sqrt{5}$, where a and b are integers. [3] **5** You are given that $$a = \frac{3}{2}$$, $b = \frac{9 - \sqrt{17}}{4}$ and $c = \frac{9 + \sqrt{17}}{4}$. Show that $a + b + c = abc$. [4] ## MEI Core 1 Surds Questions Jan 05 - May 09 6 (i) Simplify $$\sqrt{98} - \sqrt{50}$$. [2] (ii) Express $$\frac{6\sqrt{5}}{2+\sqrt{5}}$$ in the form $a+b\sqrt{5}$, where a and b are integers. [3] 7 (i) Write $$\sqrt{48} + \sqrt{3}$$ in the form $a\sqrt{b}$, where a and b are integers and b is as small as possible. [2] (ii) Simplify $$\frac{1}{5+\sqrt{2}} + \frac{1}{5-\sqrt{2}}$$. [3] 8 (i) Express $$\frac{1}{5+\sqrt{3}}$$ in the form $\frac{a+b\sqrt{3}}{c}$, where a, b and c are integers. [2] (ii) Expand and simplify $$(3-2\sqrt{7})^2$$. [3] 9 (i) Express $$\sqrt{75} + \sqrt{48}$$ in the form $a\sqrt{3}$. [2] (ii) Express $$\frac{14}{3-\sqrt{2}}$$ in the form $b+c\sqrt{d}$. 10 (i) Simplify $$\frac{\sqrt{48}}{2\sqrt{27}}$$. [2] (ii) Expand and simplify $$(5-3\sqrt{2})^2$$. [3]